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1 Basic Counting and the Binomial Theorem

Definition 1.1. A set is an unordered collection that can be described by listing its elements (e.g.
{1, a, 321}), or specifying a common property.
We allow sets with repeated elements, or multisets, and write them in the form {{x, x, y, y, z, z}} (for
example). This multiset is distinct from {{x, y, z}}.

Definition 1.2. N = {1, 2, 3, 4, . . . } and N0 = {0} ∪ N = {0, 1, 2, 3, . . . }

Definition 1.3. The cardinality of a set A, written |A|, is the number of elements in A.

Example 1.4. |{{x, x, y, y, z, z}}| = 6, |{x, y, z}| = 3.

Definition 1.5. Elements in a tuple form a list – an ordered sequence.

Example 1.6. (1, 3, 12), (1, 12, 3) and (1, 12, 3, 3) are lists, none of them are equal though.

Example 1.7. A word is a list where all elements come from a predefined set of letters, called the
alphabet. We write the word as the sequence of its elements in order, i.e. (a, b, a, a, a, b) is written
abaaab.

A word is binary if the alphabet is made up of two letters, so the word above is binary.

1.1 Counting lists and sets

There are two important rules for counting structures (i.e. anything) that are very useful in enumerative
combinatorics:

Product rule If a structure can be constructed by making one of ni independent choices at each step
i (for k steps), then the total number of structures that can be made is n1 · n2 · · · · · nk.

Addition rule If a set of structures S can be partitioned into n disjoint sets Si then |S| = |S1|+ |S2|+
. . .+ |Sn|.

These rules can be used to counting the following things:

The number of k-lists with repetitions constructed from an n-set nk

The number of words of length k in an alphabet of n letters nk

The number of k-lists without repetitions constructed from an n-set is n!
(n−k)!

The number of permutations of an n-set n!
The number of subsets of an n-set 2n

The number of binary words of length n 2n

Note the equality between the last two entries above, you can prove this explicitly by assigning a
binary word of length n to each subset of an n set.

1.2 Binomial Coefficients

Lemma 1.8 (Choosing subsets). Let n ∈ N0 and k ∈ N0 such that k ≤ n. Then the number of ways to
choose a subset of k objects form among n is:(

n

k

)
=

n!

k! (n− k)!

Theorem 1.9 (Binomial). Let x, y ∈ R and n ∈ N0 then:

(x+ y)
n

=

n∑
k=0

(n)kx
kyn−k
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Lemma 1.10 (Inductive property of Binomial Coefficients). Let n ∈ N and k ∈ N such that 1 ≤ k ≤ n−1
then: (

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Proof. This is a combinatorial proof, we look at the number of subsets of size k of the set {1, . . . , n},
by Lemma 1.8 this is

(
n
k

)
. To get the other side of the identity we take cases. The first case, we are

looking at the number of subsets of size k of the set {1, . . . , n} where we include 1 which is
(
n−1
k−1
)
. Now

the second case is where we do not include 1 where we get
(
n−1
k

)
. Therefore by the addition rule we get

the right hand side of the identity.

2 Applications of Binomial Theorem

Theorem 2.1 (Orthogonality of Binomial Coefficients). Let r, n ∈ N0 such that r < n then:

n∑
k=0

(
n

k

)
(−1)

r
kr = 0

Lemma 2.2. Let n ∈ N0 then:
n∑

k=0

(−1)
k
kn = (−1)

n
n!

Theorem 2.3 (Mean Value Theorem for Divided Differences). Let n ∈ N0. if f is n times differentiable
on an open interval containing [0, n] then there exists t ∈ (0, n) so that:

n∑
k=0

(
n

k

)
(−1)

k
f (k) = (−1)

n
f (n) (t)

Theorem 2.4 (Multiset Formula). Let d ∈ N0 and m ∈ N, the number of multisets of size d with
elements from a set of size m is: (

d+m− 1

m− 1

)
=

(
d+m− 1

d

)
Corollary 2.5 (Dimension of Spaces of Polynomials). Let d ∈ N0 and m ∈ N, the space of homogeneous
polynomials of degree d in m variables has dimension:(

d+m− 1

m− 1

)
The space of polynomials of degree at most d in m variables has dimension:(

d+m

m

)
Definition 2.6. A collection of subsets A1, . . . , Ak of a set A is called a partition if the subsets are
pairwise disjoint and their union is A. We can define an equivalence relation:
R = {(a, b) | there is Ai such that a ∈ Ai and b ∈ Ai}. Each subset is called an equivalence class of the
relation.

Theorem 2.7. The number of ordered partitions of an n-set into k subsets of cardinalities n1, . . . , nk is
n!

n1!n2!...nk!

Proof.
n!

n1!(n− n1)!

(n− n1)!

n2!(n− n1 − n2)!
· · · (n− n1 − . . .− nk−1)!

nk!(n− n1 − . . .− nk)!
=

n!

n1!n2! . . . nk!

This is called a multinomial coefficient, and represented
(

n
n1,n2,...,nk

)
. This would be the coefficient

of xn1
1 xn2

2 . . . xnk

k in (x1 + x2 + . . .+ xk)n.
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Theorem 2.8 (Multinomial Theorem). Let x, y, z ∈ R and n ∈ N0 then:

(x+ y + z)
n

=
∑

i,j,k≥0,i+j+k=n

n!

i!j!k!
xiyjzk

Theorem 2.9 (Inclusion-Exclusion Formula). For A1, A2, . . . , An and a natural k ≤ n, denote

Sk =
∑

i1<i2<...<ik

|Ai1 ∩Ai2 ∩ . . . ∩Aik |

Then |A1 ∪A2 ∪ . . . ∪An| = S1 − S2 + S3 − S4 + . . .+ (−1)n−1Sn.

Proof. Let x belong to m sets. Then x contributes m to S1, . . . ,
(
m
i

)
to Si. The total contribution is∑m

k=1 (−1)k−1
(
m
k

)
=
∑m

k=0 (−1)k−1
(
m
k

)
+
(
m
0

)
= 0 + 1 = 1.

Theorem 2.10. The number of surjections from a set of n elements to a set of k elements is

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

Proof. We use the inclusion-exclusion principle. Let Ai be the set of functions from A to B that never
take on the value i ∈ B. Then Si =

∑
j1<...<ji

|Aj1 ∩ . . . ∩Aji | =
(
k
i

)
|A1 ∩ . . . ∩ Ai| =

(
k
i

)
(k − i)n. So

the total number is
∑k

i=0 (−1)iSi =
∑k

i=0 (−1)i
(
k
i

)
(k − i)n.

3 The Fibonacci Numbers and Linear Difference Equations

Definition 3.1. The Fibonacci numbers are defined by the recursive relation

Fn+2 = Fn+1 + Fn

for n ≥ 0 and with F0 = 1, F1 = 1.

Theorem 3.2. Here are some results for Fn:

1. F0 + F1 + · · ·+ Fn = Fn+2 − 1. (Proof by induction).
2. Fn is even ⇐⇒ n is a multiple of 3.
3. The number of domino tilings of a 2× (n− 1) board is precisely Fn.
4.

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

5.

Fn =

(
n− 1

0

)
+

(
n− 2

1

)
+ · · ·+

(
n− n+1

2
n+1
2 − 1

)
.

This is the slanted diagonal on Pascal’s triangle!

Theorem 3.3 (Fibonacci Matrix Theorem). Let n ∈ N, the powers of Q generate the Fibonacci numbers
as follows: (

1 1
1 0

)n

=

(
un+1 un
un un−1

)
Theorem 3.4 (Divisibility of Fibonacci Numbers). Let m,n ∈ N0, if m|n then um|un.

Theorem 3.5 (Highest Common Factor of Fibonacci Numbers). Let m,n ∈ N0, the highest common
factor of um and un is the Fibonacci number uh where h = hcf (m,n).
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4 Generating Functions and the Catalan Numbers

Definition 4.1. Let a0, a1, . . . be an arbitrary sequence of numbers. The generating function for this
sequence is the function

G(x) =
∑
i≥0

aix
i

this is a formal power series, it does not need to converge or define a nice function! The sequence {ai}i≥0
is then called the coefficients of the generating function G.

If A,B are generating functions with coefficients {an}, {bn}, AB is a generating function with coef-
ficients {cn} defined as cn =

∑
i+j=n aibj .

The generating function for the Fibonacci numbers is:

0 + x+ x22x3 + 3x4 + 5x5 + · · · = x

1− x− x2

The generating function for the multiset formula is:

∞∑
d=0

(
d+m− 1

m− 1

)
xd =

1

(1− x)
m

Definition 4.2. Given a regular polygon with labelled vertices a triangulation is a subdivision of the
polygon into triangles obtained by drawing non-intersecting diagonals of a polygon.

Definition 4.3. The n-th Catalan number, Cn is defined by:
Cn = the number of triangulations of a polygon with n+ 2 sides.
E.g. C0 = 1, C1 = 1, C2 = 2, C3 = 5.

Catalan numbers can be used to count many things. Here we have Dyck paths as one example, in
assignments there was another.

Theorem 4.4. Catalan numbers satisfy the following recursive relation,

Cn+1 = C0 · Cn + C1 · Cn−1 + · · ·+ Cn · C0.

Proof. To prove this recursion we count the number of triangulations of an (n + 3)-gon in two ways.
Answer 1: (by definition) Cn+1.
Answer 2: First, label vertices of polygon from 1 to n+ 3 clockwise and notice that the top edge of the
polygon, between vertices n+ 3 and 1, is contained in exactly one triangle in each possible triangulation.
To find the LHS of the equality we count the number of triangulations according to which triangle
contains the top edge. In the general case, where the triangle K containing the top edge is defined by
vertices {n+ 3, 1, n−k+ 2}, on the left of vertex n−k+ 2 we have Ck possible triangulations and on the
right Cn−k possible triangulations. This gives a total of Ck · Cn−k possible triangulations for the case
where the top edge is contained in triangle K. We now add over all the cases to, from K = 1toK = n.
This gives, C0 · Cn + C1 · Cn−1 + · · ·+ Cn · C0, as required.

The following is a great way to practice finding the generating function of a sequence!

Theorem 4.5. Let g(x) =
∑∞

n=0 Cnx
n, then g(x) =

1−
√

1− 4x

2x
.

Proof.

g(x) = C0 + C1x+ C2x
2 + · · ·

(g(x))2 = (C0 + C1X + C2x
2 + · · · )(C0 + C1x+ C2x

2 + · · · )
= C2

0 + (C0C1 + C1C0)x+ (C0C2 + C1C1 + c2C0)x2 + (C0C3 + C1C2 + c2C1 + C3C0)x3 + · · ·
The coefficients of xn now look like the recursion relation we proved in the last theorem so

(g(x))2 = C1 + C2x+ C3x
2 + · · · = C1x+ C2x

2 + C3x
3 + · · ·

x

=
1

x
(−C0 + (C0 + C1x+ C2x

2 + C3x
3 + · · · )) =

−1 + g(x)

x
.
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Rearranging this we get (g(x))2 − g(x) + 1. If we solve this using the quadratic formula the result
follows.

Theorem 4.6 (Catalan Numbers). Let n ∈ N, then the number of ways to dissect a regular (n+ 2)-gon
into n triangles using the diagonals is the Catalan number:

Cn =
1

n+ 1
·
(

2n

n

)

5 Permutation, Partitions and the Stirling Numbers

Definition 5.1. Let n, k ∈ N, the Stirling number of the second kind

{
n
k

}
is the number of partitions

of a set of n symbols into k non-empty subsets.

Theorem 5.2 (Recurrence for Stirling II). Let n, k ∈ N, The Stirling numbers

{
n
k

}
satisfy the

following recurrence: {
n
k

}
= k

{
n− 1
k

}
+

{
n− 1
k − 1

}
Theorem 5.3 (The Stirling numbers of The Second Kind). Let n ∈ N and k ∈ N0 then:

{
n
k

}
=

1

k!

k∑
j=1

(
k

j

)
(−1)

j
(k − j)n

Definition 5.4. Let n ∈ N0, the n-th Bell Number is the total number of partitions of a set of size n:

Bn =

n∑
k=0

{
n
k

}

Theorem 5.5 (The Bell Numbers). Let n ∈ N0 The Bell numbers are given by:

Bn = e−1
∞∑
k=0

kn

k!

Theorem 5.6 (Exponential Generating Function for Bell Numbers).∑
n=0

Bn

n!
· xn = exp (ex − 1)

Definition 5.7. Let n, k ∈ N, the unsigned Stirling number of the first kind

[
n
k

]
is the number of

permutations of n symbols which are the product of k disjoint cycles.

Theorem 5.8 (Recurrence for Stirling I). Let n, k ∈ N, the Stirling number

[
n
k

]
satisfy the following

recurrence: [
n
k

]
= (n− 1)

[
n− 1
k

]
+

[
n− 1
k − 1

]
Theorem 5.9 (The Stirling Numbers of The First Kind). Let nN:

n∑
k=1

[
n
k

]
xk = x(x+ 1)(x+ 2) · · ·



6 MA241 Combinatorics

6 Basic Graph Theory: Euler Trails and Circuits

Definitions 6.1. 1. A graph G is a collection of vertices V = {v1, v2, . . . , vn} together with a set of
edges E each of which is a pair of vertices.

2. A graph G is said to be connected if there is a path in G between any pair of vertices. Each graph
can be decomposed into connected components.

3. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection φ from V1 to V2
with the property that {x, y} ∈ E1 if and only if {φ(x), φ(y)} ∈ E2.

4. If G = (V,E) is a graph then a subgraph of G is a graph (V ′, E′) where V ′ ⊂ V and E′ ⊂ E (and
the elements of E′ are pairs of elements of V ′).

5. An induced subgraph of (V,E) is a graph (V ′, E′) where V ′ ⊂ V and E′ consists of all pairs in E
that are subsets of V ′: we include all the edges of G that we can.

6. A walk in a graph is a sequence of vertices, each one adjacent to the next, possibly with repetition.
It is closed if its first and last vertices are the same.

7. A path is a walk which uses distinct vertices. A cycle is a closed walk which uses distinct vertices
except at the ends.

8. A graph is bipartite if its vertex set can be partitioned into two parts A and B in such a way that
all edges cross from A to B: (none is inside either part).

9. A complete graph is one where every vertex is connected via an edge to every other vertex. We use
Kn to denote the complete graph on n vertices.

Example 6.2. The following families of graphs are good to know:

Pn – the path on n vertices Cn – the cycle on n vertices Kn – the complete graph on n vertices

Theorem 6.3 (Characterisation of Bipartite Graphs). A graph is bipartite if and only if it contains no
odd cycles.

Lemma 6.4 (Odd Walk Lemma). If a graph contains a closed walk of odd length then it contains a
cycle of odd length.

Definition 6.5. A walk in which all the edges are distinct is called a trail, if it is closed it is called a
circuit.

Lemma 6.6 (Handshaking Lemma). The number of vertices of odd degree in a graph is even.

Proof. Let G = (V,E) be a graph with m edges. For each edge there are corresponding vertices v1 and
v2 for which this edge contributes 1 to deg (v1) and 1 to deg (v2). So we have:∑

v∈V
deg(v) = 2m.

The result follows since if we had an odd number of vertices of odd degree then the sum would be odd
which would contradict the above formula.

Theorem 6.7 (Euler Circuits). A connected graph G has an Euler trail if and only if it has just two
vertices of odd degree, and an Euler circuit if and only if it has none.

To prove this we assume we have a closed Eulerian trail of maximal length and argue that if it does
not contain all edges we can extend it to contain more edges, contradicting our assumption.
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7 Trees, Spanning Trees and Cycles

Definition 7.1. A tree is a graph that is connected but contains no cycle.

Lemma 7.2. Let G be a graph, the following are equivalent:
1. G is a tree
2. G is a maximal graph with no cycles, (i.e. maximal in the sense that G is a graph where adding

one more edge e would mean G+ e contains a cycle)
3. G is a minimal connected graphs, (i.e. minimal in the sense that G is a graph where removing one

edge e would mean G− e is not connected)

Definition 7.3. A spanning tree of a graph G is a tree in G that connects all the vertices of G.

Lemma 7.4 (Spanning Trees). Every connected graph contains a spanning tree.

Theorem 7.5. Let n ∈ N and G be a connected graph with n vertices, the following are equivalent:
1. G is a tree
2. G has exactly n− 1 edges
3. G contains no cycles
4. Every pair of vertices is connected by a unique path

Proof. (1) ⇒ (2) Proof by induction on n. Suppose we have a tree with 1 vertex, it is a tree with zero
edges. Assume the statement is true for any trees with vertices strictly less than n. Let G1, G2 be trees
with k and n− k vertices respectively with k < n such that G can be made by joining G1 and G2 by an
edge. By induction assumption, G1 has k− 1 edges and G2 has n− k− 1 edges. So the number of edges
in G is k − 1 + n− k − 1 + 1 = n− 1. Therefore true by induction
(2) ⇒ (1) Proof by contradiction, suppose G has n − 1 edges, is connected and is not a tree. Then by
Lemma 7.2 we can remove an edge and still get something that is connected. This is a contradiction as
we cannot have a connected graph with n vertices and n− 2 edges. Hence, G is a tree.
(1)⇒ (3) Poof by contrapositive, Suppose G has a cycle, we can remove any of its edges and still get a
connected graph then G cannot be a tree.
(3)⇒ (4) Proof by contradiction, suppose G has no cycles. Suppose 2 vertices are joined by two distinct
paths, then we have a cycle which is a contradiction.
(4)⇒ (1) Proof by contradiction, suppose ever pair of vertices is connected by a unique path and that G
is not a tree. By Lemma 7.2 we could remove an edge and get something that is connected. This means
there are two ways of getting from one vertex to another which is a contradiction.

Definition 7.6. Let n ∈ N, if G is a graph on the vertices i = 1, 2, . . . , n and for each i the vertex i has
degree di, then the Laplacian of G is the symmetric matrix (aij) given by:

aij =


di if i = j

−1 if ij is an edge

0 if i 6= j and ij is not an edge

Theorem 7.7 (Kirchoff’s Matrix Tree Theorem). Let L be the Laplacian of a graph G then the number
of spanning trees of G is any (n− 1)× (n− 1) principal minor of L.

Theorem 7.8 (Cayley’s Formula). Let n ∈ N such that n ≥ 2, then there are nn−2 trees on n vertices.

Suppose we choose a collection of n−1 of the eij vectors and put them side by side to form a matrix:
then the determinants of the (n− 1)× (n− 1) submatrices all have the same size. The (n− 1)× (n− 1)
minors are zero if the edges form a cycle but are ±1 if they form a tree.

Suppose we are given a graph G with m edges and we form the n×m incidence matrix B̃ using the
edge vectors. Then the number of spanning trees of G is the sum of the squares of the (n− 1)× (n− 1)
determinants of the incidence matrix with a row deleted.

Theorem 7.9 (Cauchy-Binet). Let k,m ∈ N such that k ≤ m and B be a k ×m matrix. The sum of
the squares of the k × k minors of B is:

det
(
B ·BT

)
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If G is a graph on n vertices with m edges form the n×m matrix B̃ whose columns are the vectors
eij corresponding to edges in G. If L is the Laplacian of G then:

B̃.B̃T = L

8 Hall’s Theorem

Definition 8.1. If G is a bipartite graph with vertex sets A and B then a complete matching from A
into B is a set of disjoint edges which cover the vertices of A. (One edge coming out of each vertex of
A).

Theorem 8.2 (Hall’s Marriage Theorem). Let G be a bipartite graph with vertex classes A and B. For
each subset U ⊂ A let Γ(U) be the set of neighbours of vertices in U :

Γ(U) = {b : ab is an edge for some a ∈ U}

If for every U ⊂ A the set Γ(U) is at least as large as U then G contains a complete matching from
A into B.

9 Ramsey Theory

Another important idea used in a number of combinatorial arguments is the pigeonhole principle which
states that: If n+ 1 objects are placed in n boxes then at least one box has two or more objects in it.

There is a more general version of this, known as the stronger pigeonhole principle which states that:
If n(r − 1) + 1 objects are placed in n boxes then at least one box has r or more objects in it.

This can be used to prove statements such as the following:

Theorem 9.1 (Erös-Szekeres). Every sequence of real numbers a1, . . . , an2+1 contains an increasing or
decreasing subsequence of length n+ 1.

Proof. Suppose there does not an increasing subsequence of length n + 1. Let mk be the length of the
largest increasing subsequence starting at ak. We have that mk satisfy 1 ≤ mk ≤ n and we have n2 + 1
different lengths mk, by the strong pigeonhole principle at least n+ 1 of them much be equal. Suppose
mi1 = mi2 = · · · = min+1

then ai1 > ai2 > · · · > ain+1
therefore this is a decreasing subsequence of

length n+ 1.

Definition 9.2. Let s, t ∈ N such that s, t ≥ 2, we set R (s, t) to be the least number n so that no
matter how we 2-colour the edges of the complete graph Kn then we find either a red Ks or a blue Kt.

Theorem 9.3. In a party in 6 or more people, there is a group of 3 who are either mutual strangers or
mutual acquaintances i.e. R(3, 3) = 6

Proof. Here we show that R (3, 3) ≤ 6, it is an exercise to show R (3, 3) > 5. We think of people as
vertices in a complete graph on 6 vertices where edges are coloured either blue or red according to
whether they are strangers or acquaintances. We claim no matter how the edges are coloured, there is
always a monochromatic triangle i.e. all edges in the triangle are one colour. Pick any vertex, by the
strong pigeonhole principle at least 3 of the 5 edges must be the same colour. Suppose this is red, there
are 3 other edges joining the vertices in our monochromatic triangle. (Draw a picture). Proceeding by
cases either one of these edges is red which implies there exists a monochromatic triangle. Or there are
no reds in which case we have a monochromatic blue triangle.

Lemma 9.4. Let s ∈ N such that s ≥ 2 then R (s, 2) = s.

Theorem 9.5 (Ramsey Recurrence). Let s, t ∈ N such that s, t ≥ 3 then:

R (s, t) ≤ R (s− 1, t) +R (s, t− 1)
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Theorem 9.6 (Ramsey Bound). Let s, t ∈ N such that s, t ≥ 3 then:

R (s, t) ≤
(
s+ t− 2

s− 1

)
Lemma 9.7 (Universal Graphs for Trees). Let t ∈ N, if G is a graph in which every vertex has degree
at least t− 1 then it contains a copy of every tree of order t.

Theorem 9.8 (Ramsey for a Complete Graph Against Trees). Let s, t ∈ N such that s, t ≥ 2 and
n = (s− 1)(t− 1) + 1. If you 2-colour Kn then you find either a red Ks or a blue copy of every tree of
order t.

Theorem 9.9 (Erdös Lower Bound for R(s, s)). Let s ∈ N such that s ≥ 3, then:

R(s, s) ≥ 2(s−1)/2

10 Planar graph

Definition 10.1. A graph is planar if it can be drawn on the plane in such a way that no two edges
cross each other.
Such a drawing of a graph G is called a planar representation of G. A face (or region) is an area of the
plane bound by edges in a planar representation.

Theorem 10.2 (Euler’s Formula). Let G be a connected planar graph with v vertices, e edges and f
faces, then:

f + v = e+ 2

Proof. Suppose G is a graph with v vertices, e edges and f faces. Remove edges of G until it is minimally
connected and call this G′. G′ a tree which has to have 1 face otherwise there is a cycle and the graph
would then not be a tree and hence no minimally connected. So if it has v′ = v vertices then it has
e′ = v − 1 edges and f ′ = 1 face so v′ − e′ + f ′ = 2. Add back the edges that were removed one by 1,
every time we add an edge, we increase the number of edges by one and increase the number of faces by
1. Therefore v − e+ r = 2.

Lemma 10.3 (Maximal Planar Graphs). Let n ∈ N, a maximal planar graph on n ≥ 3 vertices has
3n− 6 edges.

Proof. Let G be planar graph and r1, . . . , rf the number of edges bounding each face in planar represen-
tation of G. Each edge bounds 2 faces so 2e = r1 + r2 + · + rf . Each ri is at least 3 so 2e ≥ 3f hence
f ≤ 2

3e. Substituting this in the Euler’s formula, we get 2 = v − e+ f ≤ v − e+ 2
3e.

Theorem 10.4 (The 5 Colour Theorem). Every planar graph can be coloured with 5 colours.

The proof of this theorem is by induction on the number of vertices. The difficult case being if we
have every vertex of degree 5 or more (there must be one of at most five from earlier).

Theorem 10.5 (Non-Planar Graphs). The graphs K5 and K3,3 are not planar.

Theorem 10.6 (Kuratowski’s Theorem). A graph fails to be planar if and only if it contains a subdivision
of K5 or K3,3.

11 Boolean Functions

Definition 11.1. Let n ∈ N, a Boolean function is a function from {0, 1}n → {0, 1}. To each input
sequence (x1, x2, . . . , xn) of bits, it assigns an output bit.



10 MA241 Combinatorics

Example 11.2.

(0, 0) 0 1 0 0

(0, 1) 0 1 0 1

(1, 0) 1 0 0 1

(1, 1) 1 0 1 1

(X,Y ) X X X ∧ Y X ∨ Y

Definitions 11.3. 1. A disjunction of elementary conjunctions is called a disjunctive normal form
or DNF.

2. A conjunction of elementary disjunctions is called a conjunctive normal form or CNF.

Lemma 11.4. Each function can be written in DNF or CNF.

It is easy to check the satisifiability of a DNF.

Definition 11.5. NP is the space of problems for which we can check the validity of a solution in
polynomial time.

Lemma 11.6. If a problem is in NP and is NP-hard then it is NP-complete.

Lemma 11.7. Satisfiability for CNF’s with 3 symbols in each disjunction is NP-complete.



This guide would not be possible without our wonderful sponsors:


	Basic Counting and the Binomial Theorem
	Counting lists and sets
	Binomial Coefficients

	Applications of Binomial Theorem
	The Fibonacci Numbers and Linear Difference Equations
	Generating Functions and the Catalan Numbers
	Permutation, Partitions and the Stirling Numbers
	Basic Graph Theory: Euler Trails and Circuits
	Trees, Spanning Trees and Cycles
	Hall's Theorem
	Ramsey Theory
	Planar graph
	Boolean Functions

