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1 Magnetism

Magnetism in matter is a purely quantum phenomenon, arising from the interaction of electrons of atoms
with other electrons or with external fields. Here, origins of magnetic interactions between electrons, and
phenomenological types of magnetic behaviour will be discussed. We start by quick overview of neccessary
knowledge.

1.1 Overview - Magnetic Field In Materials

Magnetic field induction B inside materials induces magnetisation M of the material, which corresponds
to the magnetic dipole density. These are connected by

B = po(M + H) (1)

where f1g = 47 x 107" H m ™! is the permeability of vacuum and H is the magnetic field strength imposed
on the material (same as in vacuum surrounding the material). Specifically, in linear materials, we usually
write constitutive relation

M = xH (2)
where x is the susceptibility of the material, and has no units. Depending on the phenomenology of the

magnetic behaviour, y can have vastly different values.
It follows from — that B inside the material can be expressed in terms of By outside the material as

B =po(1+x)H = (1+x)Bo
where we used that in vacuum, M = 6, and so
By = noH
Usually, we write

wr=14+x (3)

as the relative permeability of the material.

1.2 Overview - Magnetic Phenomenologies
1.2.1 Diamagnetism

Diamagnetism occurs when no other magnetic order is present in the material. It arises as a reaction of
individual, non-interacting atoms to the external magnetic field. For it to occur, the electron shell of the
atoms must have no net magnetic moment due to unpaired electrons.

The susceptbility for diamagnetism is negative and small compared to 1, causing the magnetic field to be
reduced slighlty in the material.

1.2.2 Paramagnetism

Paramagnetism occurs when the isolated itoms interact with the external field (as in diamagnetism), but
the atomic shells have a net magnetic moment. This can occur due to mechanism of electron filling, which
follows Hund’s rules, which are now listed

1. First, try to fill the orbitals with electrons or electron pairs in the shell so that the spin of the shell
is maximized.

2. After maximizing the spin, decide on which orbitals are occupied by electron or electron pairs so that
the orbital angular momentum of the shell is maximized.

3. Determine the overall ground state angular momentum J of the shell, which is

(a) J =|L+ S| for more than  of the shell filled
(b) J =|L — S| for less than % of the shell filled
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if there are unpaired electrons left after the electron filling, the compound can be paramagnetic.
The susceptibility for paramagnets follows the Curie law

X = T (4)
where C' is a constant with temperature. This arises as the competition between the alignment of the
atomic magnetic moments and the randomness of the finite temperature of the system.

Special case is for metalic paramagnetism, where the susceptibility is temperature independent. Suscepti-
bilities for paramagnets are usually small and positive.

Curiosly, paramagnetism can sometimes occur even when we suspect that the shells of the atoms should
have no unpaired electrons. This can arise from the interaction with crystal field of the compound, which
causes orbital splitting and changes the quantum numers of the system. Then, the electrons fill the new
orbitals differently, and can remain unpaired.

1.2.3 Ferromagnetism

Ferromagnetism occurs when the field produced by the alignment of the atoms can influence other atoms
even in the absence of external field. The susceptibilities for ferromagnets are enormous, and the susceptibil-
ity as a concept stops being properly meaningful in many ferromagnets, as there is non-zero magnetisation
in absence of the external field.

1.2.4 Anti-ferromagnetism

Anti-ferromagnetism is a peculiar ordering of the atoms, in which the neighbouring magnetic moments
are anti-aligned with each other. The susceptibilities are positive, and there is zero magnetisation in the
absence of external field.

1.3 Classical Magnetic Dipole Mechanics

Magnetic dipole moment mu is usually described as a current I running in a loop. Its magnitude is
determined by integration over the loop area
= // 1d$
s

where dS is the oriented area element (oriented by the right hand rule with respect to the current direction).
In this image, the current carriers also have a certain angular momentum. We relate the angular momentum
to the magnetic momentum via the gyromagnetic ratio

fi=~L

where L is the angular momentum. For atoms, the magnetic moments are usually of the order of Bohr

magneton
eh

pp =5 = 9274 % 1074 A m™? (5)

mg
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Recogmzmg that the magnetic moment in this setup is i = IS, we can write the general result for the
torque 7 acting on the magnetic moment

F=jix B (6)
Now, we try to determlne the energy of this setup. Suppose that we started from the magnetic moment
aligned with the B field. Then, we rotate it towards angle 6 away from the field. First, we should note that
the torque 7 on the moment and the oriented angle g from the moment to the B vector point in the same
direction. Therefore, the work done during this rotation of the magnetic vector is

6
W = / / |7]d0 = / uBsin8df = pB(1 — cos 0)
0
Hence, the energy stored in the system is
E = —pBcosl = —ji- B (7)

where the arbitrary constant uB was substracted. Here, p and B stand for magnitudes of i and B
respectively.

1.4 Magnetic Interactions

The magnetic moments of different atoms can influence each other in different ways. Some of these are now
described.

1.4.1 Magnetic Dipole Interaction

Magnetic dipole interaction is classical interaction of the two magnetic moments fi; and jis, with energy

Ho o o S A= oA
= W( 1+ 2 — 3(fy - 7)(fla - 7))
where 7 is the unit vector pointing between the moments and r is the distance between the moments.
However, this interaction is not strong enough to explain magnetism at room temperatures, which is
commonly observed. Quantum mechanisms have to be introduced to explain such behaviour.

1.4.2 Direct Exchange Interaction

More important interaction is the exchange interaction, which summarizes a couple of quantum based
interactions. One such interaction is the direct exchange interaction. It can be explained by the tendency
of the spins to have opposite/parallel direction to their neighbours. This tendency can occur because the
electrons can or cannot (depending on the alignment) cross to the other orbital, depending on the sign.

More formaly, a pair of spins can form together a spin triplet or singlet, based on the addition of angular
momentum in quantum mechanics. The electron state on the single atom can then be expressed as the
combination of the triplet and singlet states, as these form an orthonormal basis. The energy of these mixed
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states then determines the energy of the overall system, which can be written in terms of the Heisenberg
hamiltonian
H=-Y J;S-5; (8)
if
where S; is the vector spin operator for spin on site ¢ and J;; determines the energy for exchange between
spins on site ¢ and j, anywhere in the crystal.
1.4.3 Indirect Exchange Interaction

Indirect exchange interaction has the same essential mechanism as the direct exchange, but is mediated via
other electrons. Example given in lectures is that of two spins connected by paired electrons in an p orbital
of oxygen atom, which form the chemical bond. Each of the spins tries to anti-align with the electron on
the oxygen, so that it can mix the orbitals with that of the oxygen. This leads to overall preference of
anti-alignment of the two spins.

1.4.4 Double exchange

Double exchange interaction arises in systems with different valency on otherwise same atoms. The extra
electron on one of such atoms can only propagate to the atoms of other type when specific orientation
of other electrons is achieved. In example presented in lectures, the overall effect is the alignment of the
electrons common for both atoms.

1.4.5 Anisotropic interaction - Dzyaloshinsky-Moriya interaction

Dzyaloshinsky-Moriya interaction tries to tilt the spins towards each other, and its Hamiltonian for a pair
of spins S; and S, can be expressed as

His = Dia - (S1 x S»)
wherer 512 is a vector of constants and determines a direction from which the spins try to tilt away (in
order to minimize energy).
1.4.6 Strong Anisotropy

In some cases, the anisotropy is so strong that the moments are effectively fixed to a certain direction, or
two directions. This is introduced into the Hamiltonian by term

H;=D Z(Szk)z

where S'f is the component k of the spin operator at site i. If D > 0, the k direction is unfavourable, and
spins are restricted to the remaining two directions. If D < 0, the k direction is preffered and there is a
single direction of alignment.

The effective Hamiltonian than only involves the effective spins. For D > 0 along z direction, it has form

H = —O',JJ”(S;TS;E + SE’S;’)
and for D < 0 along z, it has form of the so called Ising Hamiltonian

H = —JijJiijS;

1.5 Magnetic Measurement Techniques
1.5.1 Magnetic Resonance

A sample placed inside an oscillating field. An external field is imposed on the sample, which causes splitting
of the otherwise degenerate levels. The radiation form the oscillating field is then resonantly absorbed at
frequencies corresponding to the splitting. The splitting is however also dependent on the local environment
of the magnetic moment that is being investigated, and by deviations from predicted values of the splitting
in the vacuum, a chemical shift can be determined.
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1.5.2 Magnetisation and Susceptibility

Magnetisation is essentially measured by two techniques. Torque measurements try to extract the torque
acting on the magnetised sample due to interaction of its magnetic dipole with an external imposed field.
Usually, light interferometer is used to differentiate small deformations of a long rod with the sample on
the end.

Other possibility is to measure the voltage induced by the moving magnetised sample. Classicaly, the
sample has to vibrate at relatively high frequency to measure reasonable voltage amplitude (VSM). Other
possibility is to used superconducting Josephson junction for the detection of small changes in the magnetic
field (SQUID).

1.5.3 Calorimetry

The calorimetry measurements can be used to search for changes in entropy corresponding to phase tran-
sitions in the sample. Usually, the sample on a platform is heated slightly and the temperature relaxation
is measured and fitted to determine the heat capacity of the sample.

1.5.4 Neutron Scattering

Neutrons have their own magnetic moment and interact with the magnetic moments in the material. And
because they are neutral, they ignore the electronic structure in the material which is not magnetic. Neutron
scattering can be both elastic or inelastic. The biggest problem for neutron diffraction is the steady source
of neutrons at a specific energy, which is expensive, and so the neutron scattering experiments are only
carried out at specialised facilities.

1.5.5 Mossbauer Spectroscopy

Madssbauer spectroscopy measures the shifts in nuclear spin states that are unaccessible by magnetic res-
onance. To achieve the high energies, an isotopy with gamma ray decay of energy similar to that of the
transition that is measured is chosen. The sample is then moved at different velocities relative to the source
of the gamma rays. When the Doppler shift matches the chemical shift, the gamma rays are resonantly
absorbed, which is detected and thus the chemical shift is determined.

Because of the requirement on the transitions, this type of spectroscopy is restricted to a small number of
nuclei, including iron, tin, iodine and few other elements.

1.5.6 Muon Spin Rotation

Muons can be produced at specific energy scale and therefore probe a specific type of magnetic moment
interaction. However, a proton collider is usually neccessary to produce them from the decay of pions.

1.6 Paramagnetism
1.6.1 Classical Paramagnetism

Now, we move on to the discussion of magnetic phenomenologies in more detail, starting with a classical
paramagnet. In a classical paramagnet, the magnetic moments on different sites have the same magnitude
1 and do not interact. They form a simple canonical ensemble in an external magnetic field of magnitude
B along certain direction (lets say z direction). The energy of a single paramagnet is given by

E=—uBcosd = —uBz

where 6 is the angle between the tilted magnetic moment, 8 = kE%T and the field and z is the relative
amount of u that is projected onto the z axis.
The partition function can be then found as
1 1
7 = —/ e_E(z)ﬁdZ
=1
where N is a normalization factor. Hence
1t 1/ 1 2 (1
7 = — uBBz g, — — BuB _ —BuB) _ 2 inh B
N/_le 7= BB (e e ) ~ \ 7B sinh(SuB)
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Therefore, the partition function can be written as

2
Z = Gub sinh(BuB) (9)

Using the relation to the Helmholtz free energy
F=—-kpTlhZz

we can recover the average magnetization in the z direction as

OF 107 uB 2 2
= =22 = _ inh(BuB h(BuB -
<k >= g =kl G ey = S nn (B ( Gz Smh(BuB) + 5 o cosh(Bp )5“)
= (coth(ﬂ B) — L )
g M Bus
Defining the Langevin function L(y) = coth(y) — %, we then have
< pp >= pL(BuB) (10)

The magnetization of the whole system is then simply M = N < u, >= NuL(8uB), where N is now the
number of paramagnetic moments per unit volume.

Importantly, in the limit of small external field/high temperature (as only the B/T ratio determines the
average magnetization of the system), we have y = fuB — 0, and so

2 3 2
L(y) ZCOth(y)__: v —y ~ 22 63 22
y e'-—e Yy 1+y+L+E5-1+y—%+

2
24y 1 1 (144 1 2 2 Ly v v
2ty 11 2 1 z-((1+y—>(1—y—>—1>:—<y——y——y—>zg
y+L Yy y\1+% y 2 6 y\z 6 12/ 3

and so, the magnetization for small external field is

v
6 —
Y3
6

B
M=N<uz>szﬂﬂT

and so the magnetic susceptibility can be determined at high temperature as

M_[,L()M

H B

N 2
3kpT
this dependence is called the Curie’s law (as seen in @), and is the important law we will see repeatedly

at high temperature behaviour of magnets.
Note that in the expansion of the Langevin function, we have effectively shown that

coth(y) = — + %

QL | =

for small y.
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1.6.2 Quantum Paramagnetism

Now, we quantise the possible magnetic moment positions by quantizing the angular momentum of the
particles creating the magnetic moment. Suppose we have spin J particle, which has 2J + 1 possible
momentum states, differentiated by the projection of th angular momentum on the z axis. Using the
gyromagnetic ratio, we can express the magnetic moment of the particle as

Ko = gupmy (12)

where up = 2‘;}; is the Bohr magneton, g is the g—ratio and m; is the magnetic quantum number, running

from —J to +J in increments of 1. The energy of a state is still given by

E=-u,B=—gugBm,

and so the partition function is

J 2J
7 = § :egMBB,BmJ — § : eItsBBmy _ o—gupBBJ E : eIkBBBMm;
my my=—J myg=0

This is a geometric series in powers of e9#885  and hence

p oupBos L — e BB(2J+1)
— e B

1 — eyrBBB
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Finally, changing variables to y = gupfBJ = aJ, we can write, for the bulk magnetization

2J +1 2J +1 1 1
M ZguBJN( + coth( + y) — — coth (—y)) =gupJNBj(y) (13)

2J 2J

where IV is the paramagnetic moment density, and

2J +1 2J +1 1 1
By(y) = + coth( + y) — — coth (—y)

2J 2J

is the Brillouin function. The equation gives the magnetization behaviour for quantized magnetic
moment at finite temperature. To check the validity of our model, we should verify the correspondence
principle. Letting quantum number J — oo and setting gupJ = p as the magnitude of the magnetic
moment (see ((12)), we obtain

2J 2J 1 1 1
M i (5 coth(37) - ﬁ(g)) =¥ (cothy) = 3 ) = VL)

and we recover classical analogue , as y = uBB.

Now, consider a high temperature/small field regime for a quantum paramagnet. The Brillouin function
can be expanded as (using the expansion for coth(y) for small y)

By(y) 2J+1( 1 +2J+1y> 1 ( 1 1y)
JY) ~ - — 4+ —vy )] =
27 \ 2, 7 T6J 27\ Ly " 6J

(27412 -1 4P +4J4+1-1  J+1

1272 /7 PV VA
Substituting in for ¥ and going back to magnetization, we have
(J +1)gupB
M= N——F—"—
gusd 3haT

and in terms of magnetic susceptibility

_ oM _ potigs N

= 14
B 3ksT (14)

with perr = gupy/J(J + 1) as the effective magnetic moment of the paramagnetic particle. This is the
quantum analogue of the Curie law, and it has the exact same form as the classical law.
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1.6.3 Adiabatic Demagnetisation

The entropy of a paramagnet changes as the field is introduced or as the temperature is reduced, and again
is only dependent on the ration of B/T. Hence, for a fixed B, entropy is a function of T' and similarly,
for a fixed T', entropy is a function of B. Since at T' — 0, entropy approaches 0 as well, we have only one
topology of the entropy as a function of T' possible, as seen in Fig. [I}

S

Figure 1: The lines of constant magnetic field induction leave S = S(T'). As in non-zero field, the param-
agnet has more spins aligned with the field, the entropy as a whole is smaller in non-zero field case. The
arrows show the steps taken during adiabatic demagnetisation cooling.

During adiabatic demagnetisation, the field is first slowly introduced to a sample in an isothermal bath.
Then, the bath is extracted from the system, leaving the sample isolated. Then, the field is removed, which
causes sample demagnetisation. But, since the sample is now isolated, the only way for it to demagnetise is
adiabatically, and hence the entropy of the sample is conserved. Then, the temperature of the sample must
reduce. This procedure can reduce the temperature of the sample significantly, down to order of mK.

1.7 Ferromagnetism

So far, we have explored paramagnets, which correspond to many body Hamiltonian of form
H=gupy 8B
i

where 7 indexes the paramagnetic particles. For ferromagnets, the interaction between the different particles
takes place in terms of the Heisenberg Hamiltonian, as

IA{: _ZJijgi'gj"‘gﬂBZSj'B
i, J
where J;; is the exchange constant and the second term is the Zeeman field interaction term, same as for
the paramagnet. We can explicitly divide the sum as

H=- 25'] : <Z Jij§i> + ZQMBSJ‘ B = ZS] : (gHBB - Z Jij§i> = guB ZS] (§+ Bmf,j)
J i J J { J
where we defined the molecular field at site j as

o 1 .
Bing,j = “ain > JiiSi
i

Sometimes, different definitions of the exchange constant are used, introducing the factor of 2 to the result
for the molecular field. Nevertheless, we have effectively written the paramagnetic Hamiltonian again, but
the field is offset by the molecular field.
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1.7.1 Mean-Field Approach

Setting EmN = gmf to be independent of the site in the material leads to the mean field approach to
ferromagnetism. We usually write that the molecular field is proportional to the mean magnetisation of
the sample as

By =AM (15)
where parameter )\ is possitive for ferromagnets.

Then, all results from paramagnetism hold, but the fields are now offset by the molecular fields, i.e. the
magnetisation of the sample follows from

M = gupJNB;(gupBJ(B + AM)) (16)

This is an equation of self-consistency. Consider the case when no external field is applied, i.e. B = 0.

Then, we have
M = gupJNBj(gupBJIAM)

The only way for this equation to have non-zero solutions is if the slope of f(M) = gupJNB(gupBJAM)
as a function of M is bigger than one close to M = 0 point. Back in section about paramagnets, we have

shown that J+1
B N ——
7(v) 37

for small y, and hence we can write that close to M = 0,

1 1)2N 2 N
:g/J’BJNJigHBBJAM — (gNB J(J+ )) AM = /“’Leff M

Y

M
F(M) 3J 3kpT 3kgT
Taking the derivative and applying the criterion for M to have a non-zero solution
2
A
dM  3kgT —

Hence, there exists a critical temperature T, below which there are always non-zero solutions for M, which
statisfies )
PeVy g
3kgTc
2
ey fN
To = —"—2A\ 17
T (17)

1.7.2 High Temperature Behaviour of Ferromagnets

Above the critical temperature M = 0 in the absence of external field. However, the sample can be
magnetised by external field. Doing the expansion for high 7" leads to

J+1 py N pep N Tc
M~ gugJN =" "gugJB(B + \M) = - (B + \M) = B+ %M
B 57 IkB B(B + M) 3kBT( +AM) kT + 7
2
MeffN
M(T =Ty =
( o) 3t
2
N
M=_tell”__p
3ks(T —T¢)

and in terms of susceptibility
oM popisN
B 3kg(T -To)
Note the similarity to the (14), with only difference being the offset in the temperature. This law is called
the Curie-Weiss law. From fit of the susceptibility, the critical temperature can be measured, and hence
the parameter A can be determined. An estimate of the resultant molecular field

(18)

3kpT 3kgT J
By % AMyot = 55— gy IN = =290
Mers Perr

For reasonable estimates on all variables and T =~ 1000 K, the molecular field comes out in thousands of
Teslas, which is clearly unphysical. This result shows that even though some aspects of the ferromagnetism
are explained by the mean field theory, it is mainly just an idealized model of the system.

10
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1.7.3 Landau Theory of Ferromagnetism

In the framework of the Landau theory of phase transitions, magnetisation of the sample can be viewed
as the order parameter, while temperature is the control parameter of the system. Then, close to the
transition, we write the free energy of the system ® as

® = &g +a(T)M? 4+ b(T)M* (19)

where a(T) = ao(T — T¢), ap > 0 changes signs once the critical temperature is crossed and b(T") > 0.
To find the state of the system, we need to find the minimum of the free energy with respect to the order
parameter M. The stationary points are at
dd
27—
dM
2a0(T — T )M + 4b(T)M? =0

One solution is always at M = 0, other are at
ao(T —T¢c) + 26(T)M? =0

ao(Tc —T)

M== 25(T)

(20)
Importantly, these solutions do not exist for T' > T, and coincide with M = 0 at T' = Tz. Now, we need
to decide which of the stationary points are maxima and which are minima. Taking the second derivative

d°® 9
T 2a0(T — Te) + 126(TYM
For stationary point at M = 0, fﬁ{; = 2ao(T — T¢), so for T > T, the point is a minimum, but for
T < T¢, the point is a local maximum of the free energy. The other two stationary points exist only if
T < T¢, and for them
e B
e 2ao(T — Tc) + 6&0(TC - T) = 4ao(TC — T)
and for T' < T¢, these are minima, of the free energy. And hence, for T' < T the system spontaneously
chooses a non-zero order parameter M.
From , it follows that M o« (T¢ — T)% close to the transition temperature Tx. In real systems, we
observe more general dependence
M o (Te = T)°
where + is called a critical exponent of the transition.
In terms of susceptibility
x o< (T =Te)™"

we observe a divergent behaviour as we approach the transiton, with other critical exponent +.

1.7.4 Domain Walls

In a real magnetised sample, not all parts of the sample share the same direction of magnetisation. Instead,
the sample granulates to smaller regions with distinct magnetisation directions, called domains. Domains
arise essentially from the fact that the sample has finite volume. Outside of the volume, magnetisation
does not exist, but since B field must be continuous in normal components across the boundaries, a so
called demagnetization field H, is created across the sample. The energy of the demagnetisation field can
be expressed as

Ey= —@/ dvV M - Hp (21)
2 1%

where the integration is carried out over the volume of the sample. In a linearised regime, the demagneti-
sation field can be expressed in terms of the magnetisation of the sample as

Hp=-NM

where the minus sign is customary, but useful, as the field usually points in some sense opposite to the
magnetisation. The N is called the demagnetisation factor, but generally it is a tensor with trace 1. For long
cylindrical rod parallel to the direction of the external field/magnetisation, the influence of the boundary

11
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is negligable and hence the demagnetising factor is 0. For sphere, it is 1/3 and for flat plane perpendicular
to external field, N = 1 (most demagnetisation).

The domains usually cause the magnetisation to not be perfectly perpendicular to the boundaries, and
therefore reduce the demagnetisation field and the energy cost associated with it.

Now, we will discuss some types of the domain walls, which descibe how the magnetisation changes directions
between two domains.

Néel Walls Néel walls rotate the spins on individual atoms in direction perpendicular to the domain wall
plane. Suppose that the energy between two spins can be expressed as E = —2J5] - Sy, where S; is the
direction of the ith spin. Then, for small angle § between the spins, the energy is

- - 62
E = —-2J|S? cosf ~ —2J|S|? (1 - 2)
Hence the price for rotating the spin through angle 6 is
AE = J|S1?6?
For a domain wall consisting of NV spins, the total energy is
AEy = JN|S?6?

Suppose now that the total angle through which the spins rotate is a = N6. Then

_JN|SPPa? _ J|SPPa?

AE
N2 N

This would suggest that it is reasonable to make the domain wall arbitrarily long, but this is not observed.
Instead, the magnetic anisotropy introduces another energy that has to be taken into account. Suppose
that for spin at angle ¢ to the easy direction the extra energy from deviation from the easy axis is

AEp = Dsin? ¢

Then, if ¢(i) = {-i is the angle of the ith spin to the easy axis, we have the total energy due to anisotropy
5, @
AEp N = Z Dsinz(ﬁi) ~ DL /0 sin?(¢)de

where L is the length of the domain wall. Writing L = Na where NN is the number of spins in the wall
and a is the distance between two spins and assuming that o = 7 = N, we can write the total cost of the
domain wall (in energy per unit area) as

JS%272  NDa

AEr = ——
T Na? + 2

(22)

as the integral evaluates to 2.
The energy per unit area has minimum

OAET _J527r2 N Da _ 0
ON ~— N2g2 2
2 JS?xn?
N*= =
Da a?
ﬁ 2J

a Da

2]
L_Na_wS\/D—a (23)

which leads to optimal domain wall energy density

JS*n? LD [JD [JD [2JD

12

Leading to domain wall length
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Bloch Walls Bloch walls follow the same equations as Néel walls, but the spins in them rotate in plane
parallel to the plane of the wall.

Domains in Fields In fields, the domains resize and the domain walls move so that the overall magneti-
sation of the material is achieved. Depending on the material and direction of magnetisation, two extreme
behaviours can be extracted. The material can behave like a soft magnet, where the domains resize, but
upon cancellation of the external field return to their original shape. On the other hand, hard magnets have
domains that reshape and merge upon introduction of the external field, which leads to retention of some
overall magnetisation. The fact that the magnetisation is retained is called the hysteresis of the magnet.

1.8 Antiferromagnetism

Antiferromagnetic systems have the same Hamiltonian as ferromagnetic systems, but the exchange constant
has opposite sign, and therefore, instead of all spins preffering alignment in one direction, spins prefer to
align with opposite directions to each other. If the most important interaction is between neighbouring
spins, then a Néel state, when neighbouring spins point in opposite directions, is preffered.

This leads to overall magnetisation of an antiferromagnet to be zero even in the ordered state, and therefore
different order parameter has to be used. Typically, the spins are divided into two sub-lattices with twice
the length of the unit cell, and the difference in magnetisation of these two sublattices

Mg = M, + M_
is taken as the order parameter. Magnetisation Mg is also called the staggered magnetisation.
The doubling of the unit cell size leads to Bragg peaks in neutron diffraction two reduce twice, and hence
the antiferromagnetic transition has a very recognizable signature.

1.8.1 Mean Field Approach

In the mean field, we again express the molecular field, but this time, the molecular field acting on one
sublattice is due to spins on the other lattice, i.e.

—

Bmf7+ = _|/\|M—

Bung.— = ~IAIM,

where the minus sign signifies the opposite alignment of the spins.
The magnetisation on either lattice than follows the same law as for ferromagnets

N
My = gNBJEBJ(gNBIBJ(B — [A[Mz))

where the density of the spins N is reduced by half as we are taking only one sublattice into account. The
overall magnetisation is then

Mr = My = M_ = gun - (By(gnn (B ~ ML) = By (gnnf (B~ M) (29)
Consider now the Néel state in the zero field. For Néel state, My = —M_, and since B;(y) = —Bs(—y)
My = QMBJ% (Bi(gupBJ|NMy) — By (—gusBJ M) = gupJNBy(gusBJ|A M)
Again, we can determine the high temperature limit
. NgffN|/\|

M, =———M
gupBJ|A M. ke M+

J+1

Mrp ~ JN
T~ gUB 37

Taking My ~ My = M in this limit (the — sublattice remains free to move - does not get influenced by
small field B), we have the same behaviour as for ferromagnets, where

_ kot N
X 3kp(T + Ty)

13
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where T is called the Néel temperature
HersN
Ty = <L |\
N = 3Es Al

But, this rarely matches the experimental observation. The reason behind it is that the next-nearest
interaction can shift the Néel temperature quite dramatically. Under next-nearest neighbour interaction
which creates molecular field like

Bpg+ = —| A Mpp +TMy

the Néel temperature changes as

2
Her fN
v = —"— (A -T
s el IRy
Hence, we generally write the Curie-Weiss law as
_C
XTT 9

where 6 can be both positive or negative.

1.8.2 Susceptibility in the Ordered State

Consider now the two sublattices of the antiferromagnet in the ordered state. Suppose that we apply field
B perpendicular to the directions of magnetisation of the lattices. Then, we can imagine the response of
the magnet in the classical limit as rotation of magnetisation of each sublattice by some small amount.
Suppose that the interaction between lattices is characterised by energy U M+ - M_. Both latices also
interact with the external field by term -B. (M+ + J\Z,). Hence, for conserved magnetisation magnitude
and small rotation of each sublattice by angle ¢ towards é, the energy of the system can be written as

E=UM,-M_—B-(My+M_)=—-UM?cos(2¢) — 2BM sin ¢ ~ —UM? — 2BM ¢ + 2U M>¢*

The chosen small angle will be such that the energy is minimised, i.e.

0E )
55_0_ 2BM +4UM?¢
B
¢_2UM

The resultant total magnetisation is therefore
. B
Mrp =2Msing = 2M¢ = i

and therefore the susceptibility can be expressed as

XL = %(.) (26)

and is independent of temperature.

For field applied in the direction parallel to the magnetisation direction, x| is usually dependent on tem-
perature via a power law, i.e. x| oc T* where a is some exponent. Overall, it applies that for a powder, the
susceptibility is a combination of perpendicular and parallel components in ratio 2:1, respectively.

1.8.3 Spin Flop Transition

In the presence of small magnetic anisotropy, the behaviour in parallel direction can change. At some point,
it becomes energetically favourable to reorient the spins so that they can tilt towards the external field,
even if they predominantly point perpendicular to the easy direction. We will investigate this.

Let MJHr and M be the components of the sublattice magnetisation along the easy axis. The field points
along the easy axis of the magnetisation. Then, the energy of the system in parallel configuration is

E =UM,-M_—B- (M, + M) - D(M)? + (M")?) = -UM? — 2D M?
In perpendicular configuration, the energy is

E, = ~UM?cos(2¢) — 2BM sin ¢ — 2DM?sin® ¢p ~ ~UM? — 2BM ¢ + (2UM? — 2DM?)¢’

14
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the energy will be minimised in the perpendicular configuration, i.e.

9E. _ 0=—2BM +4(U — D)M?¢
o¢
4= B
T 2U-D)M
and therefore B B B2
B, =-UM* -2 - M- 2
+ 2U-D) 20 - D) 2(U — D)

At the spin flop transition, these two energies have to be equal
By =EL

2

B
—UM? —2DM? = —UM? — ——F __
2(U - D)

By = 2M+\/D(U = D) (27)

where B,; is the critical spin flop field.

1.9 Alternative Magnetic Orders

Besides ferromagnets and antiferromagnets, many other forms of magnetic order can exist in materials. For
example, ferrimagnets occur when antiferromagnetic order takes place but the value of moments on the
two sublattices are different. As a result, there is a net magnetisation in zero applied field, as long as we
are below a certain compensation temperature. Typical example is the structure of Fe3Oy.

Other known order is the helical order, where spins are rotated by some angle 6 in the plane perpendicular
to the line connecting the spins with 6 # 7. Helical order can take place as a optimalization between nearest-
neighbour and next-nearest-neighbour interaction. In this sense, it is in the middle between ferromagnets
and anti-ferromagnets.

Because the helical order arises from optimalization of energies, the resultant order can be incommensurate,
meaning that there is no finite sized unit cell that could describe the whole material (the material lacks
periodicity).

Another type is the spin-density wave order, where the magnetic moments align with alternating mag-
nitude along certain axis, with no net magnetisation.

1.10 Spin Waves

We will now briefly discuss the excitations in magnetic systems.

1.10.1 Classical Spin Waves

Consider a ferromagnetic chain of spins with nearest-neighbour interaction, so that the Hamiltonian can
be expressed as

N
A=-2738 Sun
i=0
Magnetic moment on each site can be expressed as fi; = —ngSi, and hence the Hamiltonian can be

rewritten as .
H=- Z fi* Bi
i
2J

where B; = ;,TB(SFl + §i+1) is the local field acting on the ith moment. We can then determine the
torque acting on the spin as

T = fi; X B;
Relating torque to the change in angular momentum, which can be related to spin as hgi, we obtain vector
differential equation (now writing vectors instead of operators)
dsS; _ -

hdt —QJ(S_’;XSl 1+S,’X§i+1)

15
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Assuming that the spins have nearly constant term in the z direction S7 =S = const., we can write three
linearized equations

sy 2J 2J8
L= S (SYS = SSY, + SIS — SSY) = =37 (257 = S, - St)
ds! _2J 2J5

= == (SSE, — 575+ SSE, - StS) = (—287 + S, + S%)

dt

Substituting in a Wave—hke solution
§% — uei(kwi—wt)
(3

SY — vei(kmi—wt)
K3
leads to equations

iuweikmi—wt) — 248 (%ei(m—wt) _ peilk(@i—a)—wt) _ vei(k(xi—&-a)—wt))

h
_ivwei(kzifwt) _ _2‘;5 (2uei(kw,-7wt) _ uei(k(wifa)fwt) _ uei(k(wﬁ-a)fwt))
Dividing by the common phase, we obtain
2JS ; ; 4JS
—iuw = —v (2 = (e + emthm)) = Tv(l — cos(ka))
4
—vw = —%Su (1 — cos(ka))

These equations can be written in matrix form as

(e FE)(2)-(2)

In order for this to be a true wave solution, the solution needs to apply independent of the wave amplitudes
u and v. This can only be true when the system of equations above does have a non-zero kernel, which
implies that the determinant of the matrix must be zero, which gives us a dispersion relation

4JS

—? == cos(ka))] : =0

hw =4JS(1 — cos(ka)) (28)
For small wavenumbers, the spin wave dispersion is quadratic
hw ~ 2JSk*a®

which is significantly different from phonons, which are linear for small wavenumbers.

1.10.2 Magnons

We quantize spin waves with the dispersion relation by assuming a ladder of energies analogous for
simple harmonic oscillator (i.e. free boson spectrum). These boson particles have spin 1 and are called
magnons. They follow Bose-Einstain statistics, with occupacy

1

n(w) = ohw/(kaT) _ |

The total number of magnons in the system can be then determined as
3
> \/LT) . kgT\2 [ \/E

N xT?
The more magnons are in the systems, the less ordered the system is, until it reaches disordered state.
Suppose that there is some magnon number Ny at which the transition to disorder occurs. Then, the order
parameter is reduced in state with higher temperature by relative value N(T")/Ny, and hence the relative
order parameter follows 1 — aT3 dependence, where a is some constant. This dependence is observed in
nearly ordered states, while for mostly disordered states, the Landau-type critical emergence of the order
parameter is observed.

and so
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2 Superconductivity

2.1 Introduction to Superconductivity

First, we do an overview of basic properties of superconductors, so that we know what behaviour does a
potential theory of superconductivity need to encompass.

The basic property is zero electrical resistance under certain critical temperature. This requires also zero
electric field in the bulk of the superconductor, as any field in the bulk is imediately compensated for by
charge transfer.

Another property is no magnetic field in the bulk of the superconductor, i.e. the superconductors form
ideal diamagnets with magnetic susceptibility of xy = —1.

Besides critical temperature, there is a critical field, above which the superconducting transition does not
occur. The transition line between resistive and superconducting state follows

Bo(T) = Be(0) (1 - (fc) ) (20)

where T¢ is the critical temperature of the superconducting transition at zero field.

There is however another type of superconductors (so called type II superconductors), which do not loose
all the superconducting properties when above a critical field - instead, they form a mixed state with vortex
lines of superconducting regions, which only vanish above higher second critical field B.,. For both types,
the superconductivity completly disappears above T. It is the type II superconductors that are the most
useful ones, as they retain superconductivity even in high field situations, when most of the measurements
can be done.

Because B is zero in the bulk of the material, Ampere’s law implies that the current density is also zero in the
bulk of the material, leaving all the current to be transported by the boundary region of superconductors.
The current that is carried by the boundary can then create magnetic field, and if the magnetic field crosses
the critical field line, the superconductor can loose its properties again. Hence, there is a corresponding
critical current for superconductors.

Finally, from the more general properties, superconductors are poor thermal conductors.

2.1.1 Flux Trapping

Consider now a loop of superconducting wire. The magnetic flux ® through the centre of the wire is defined

as
= // B-dS
s
and its time derivative follows

a—q’:/ S /VXE -dS = Edl_O
ot

where the last integrand involves only E in the bulk of the superconductor, where E =0. Hence, if there
is a flux going through the middle of the superconducting wire, the flux cannot change its value - it is
trapped. This setups a persistent currents which create such flux, and basically never dissipate, due to zero
resistance of the superconductor.

2.1.2 Thermodynamics

The Gibbs Free energy for a magnetic system can be expressed as
G = —-SdT — mdB

where m is the magnetic moment of the system in the direction of the field B. For superconductor with
magnetisation M,

BV
m=MV =xHV = ———
Ho
where y = —1 for the ideal diamagnet. Hence, the energy of the superconductor in a finite field at constant
temperature is
B B 2
BV VB
Gs(B) - Gs(0) = / —mdB = / BV i =
0 0o Mo 210
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Importantly, this change in energy depends only on the magnetic field applied to the superconductor, and
for non-magnetic material it can represent the energy of the phase transition. If we write Gn as the Gibbs
free energy of the normal state of the material and Gg as the energy of the superconducting state, than
close to the phase transition

V B2

240

where B, is the critical field. Then, we can find the difference in entropies of the two states

Gy —Gg =

9Gs 0Gy _ @ (VBf) VB, 9B,

SN_SS: 6T B 8T :_87 2/},0 Mo 8T

Using Bo = B¢(0) (1 — (%)), we then have

_ VBc 2T
Sy —Ss = o BC(O)TE;

We can see that the entropy of the normal state is therefore higher than the entropy of the superconducting
state, showing that the superconducting state is an ordered state. Furthermore, at zero applied field, the
transition occurs exactly at 7' = T, where Bc = 0, and hence it is a second order phase transition, as in
this case, Sy — Sg = 0.

Finally, we could determine the thermal capacity difference as

) Bo(0)V oT 2T 2
CCe=T _ = 28V [ BL(0)s 2 il
Cn —Cs a7 (Sn —Ss) o <(0) TITE + CT%

which is non-zero even at the transition with zero field, and hence the superconducting transition can be
viewed as a second order phase transition.

2.2 London Equations

London equations describe the macroscopic properties of superconductors based on several observations.
First, it is assumed that the charge carriers are not electrons. Second, it is assumed that the particles are
in a state with zero canonical momentum (i.e. in the ground state).

Canonical momentum for a particle moving in magnetic field follows from the particle Lagrangian

1 -
inmUQ—qV+q17-A

where @ is the particle velocity, ¢ is the particle charge, V is the scalar potential and A is the vector
potential. The canonical momentum is given as

L
pizg‘:mvi‘l'in

v;
F=mi+qA
Setting the canonical momentum to zero leads to
muv = qu_f

Hence, the current density can be expressed as

=

J=ngt = ——¢’4 (30)

n
m

This expression is called the London equation.

2.2.1 Poisson Equation

Now, from Maxwell equations, we know that B =V x A and for zero electric field inside of the supercon-
ductor, it also applies that V x B = pg.J. Hence, taking the curl of the London equation leads to

VxJ=-"@vx A
m

18



PX}46 - Condensed Matter Physics 11 Formulae derivation & Revision

Here,

and therefore

pong® =

V2B = B (31)
m

This is Poisson equation for ﬁ, which is well studied equation with known solutions. Consider now 1D
solution to this equation close to a boundary of contant B = ByZ. The 1D formulation of the equation is

d*B,  pong®

= B
dz? m “

B, = Ae:ﬂ/A+Be—m/lambda

where \ = ILOTZQQ' From observations, we know that infinitely far into the bulk from the boundary, the B
field should go to zero, and hence, we can say the solution has form

B, = Bge */*

and the field exponentially decreases with penetration depth of A\. Hence, we can explain why there is no
mangetic field in the material, and also that the current density is concentrated in the boundary region
of size &~ A. It can infact be shown that the size of the boundary region is also a parameter that changes
with the temperature and close to the phase transition, it diverges. This corresponds to the fact that the
superconducting charge carrier density n goes to zero at the phase transition.

2.2.2 Flux Quantisation
Consider now taking the current density in terms of the wavefunction
J = Re (U*¢770)

where 7 = % (ﬁ — qf_f) is the velocity, which can be determined from the canonical momentum, for which

we know the explicit operator form. Then
—.\_ *i . _ =
J =Re (\Il - ( thV qA) \Il)

Now, assume that the wavefunction corresponds to free particle wavefunctions, i.e. ¥ = Woei®) where
¥, is constant. Then

J = Re (%I%F (—m(ive) - q[f)) - (%I%IQ (hve - q/I))

For the free particles, |¥4|? corresponds to the particle density n, and hence we can write

-

T =L (v - ¢A)
m

Suppose that we now integrate along a closed loop in the bulk of the superconducting material

ff-dgzq’l(nyﬁ(ve)-dg—qgﬁ E-d§>
c m C c

In the bulk of the superconductor, J =0 in the steady state. Using Stokes’ theorem

h%c(ve)-ds*:q//s(vxA’)-d§:q//SB'-d§:qq>

where @ is the magnetic flux through the loop. Suppose that 6 is not a single valued function, but the
wavefunction ¥ is. Then, we require

55 (VO) - d5 = 2rk
C

where k is an integer. Hence, we can write that the flux enclosed by a loop that is entirely in the bulk of

the supreconductor follows

h h

& =21k =—Fk (32)
q q

and hence it is quantised in increments of % Hence, we could determine the superconducting particle
charge, if we measure these increments.
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2.3 Ginzburg-Landau Theory of Superconductivity

As we talked about the superconducting phase transition as a second order phase transition, it is only
natural to incorporate it in the Ginzburg-Landau formalism for phase transitions.

We can take the superconducting wavefunction as the order parameter and temperature of the system as
the control parameter, taking ¥ = W (7)e*’(™ for the wavefunction components, with ¥, real. In the bulk
of the material, where we can assume free movement of the superconducting carriers, we have ¥4 = const.
and it makes sense to write the general second-order transition free energy as

F = Fy+ao(T —Tc)|®|* + bo| P [* (33)

where ag and by are positive constants. The extremum points are located at order parameter values for

which
OF

_— = = — 2

Hence, we have solutions |¥| = 0 (unordered solution) and |¥| = 4/ ““%;T), but from the nature of

absolute value, only the positive root makes sense. Also, the second solution only exist for T' < T. Taking
second derivative will let us determine which solutions are maxima and which are minima

O0?F

——= = 2ao(T — Tc) + 12bo|¥|?

[T ao( ) + 12bo| Y|
Hence, for |¥| =0, % = 2ao(T —T¢), and the point is a minimum for 7' > T and maximum for T' < T¢.
For |¥| = ao(+f0—T)’ 8‘9‘172 = 4ao(Te — T) and the point is a minimum for 7' < T¢. Hence, the system

below the critical temperature chooses the ordered state with order parameter

o [ao(TC —T)

Recalling that we can interpret the square of magnitude of the wavefunction as the density of the super-

conducting particles n, we can write
ag(Te =T
n = |‘I’|2 — 0( C )
2bg

and so the penetration length of the magnetic field into the superconductor is

A\ 1 1
X —= X ———
NRRVA

and we have the divergence with critical exponent of %

2.3.1 Behaviour close to the boundary

Close to the boundary of the superconductor, we expect that the superconducting wavefunction is dependent
on the position in the medium. Hence, instead of taking average values for the free energy, we need to
explicitly integrate over the region of the boundary. Furhtermore, close to the boundary, the magnetic field
can be present in the material, and its energy has to be considered, together with the energy of movement
of the superconducting particles. Hence, the overall expression for the total free energy can be written as

WV — g A B(7) — By)?
F:/ dPr <a|\If|2+;|\I!|4+ iRV — gA]7, | (B() = Bo) \I!) (34)
\4

2m 20

where the % factor in front of b occurs so that after integration, we obtain similar expression as .
Variations in both 4 and @ lead to two Euler-Lagrange equations for the minimum of the free energy.

h? -
S (=iV + %A)?m + (a+bTP)T =0 (35)
B . —igh 2% o
V: = J= S8 (Ve - wve) - %A (36)
0
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Notice that in the bulk in the absence of field, first equation becomes the equation for the location of
minimum of the free energy. Furthermore, in bulk, where ¥ does not depend on the position, the sec-
ond equation becomes the London equation. Hence, Ginzburg-Landau theory creates a functional that
encompasses all macroscopic thermodynamic behaviour of the superconductor.

The solutions of this pair of equations can be characterized into two classes, based on two numbers, A,
which is the penetration depth as seen before, and £, which is called the coherence length. In terms of the
parameters above, these can be expressed as

b
A==
Hoq?|al
h2
f:
2m|al|

Their ratio then predicts the type of the solution/superconductor.

For k < \%, the superconductors are the Type I superconductors, and the boundary regions for them are

highly unfavourable. For x > %, the Type II superconductors are the solution and boundary regions are
not so unfavourable, and hence the superconducting vertex regions can exist in otherwise normal material.
For the type II, the second critical field value B., = where ®( is the magnetic flux through the
material.

Interestingly, the vortices formed in the material repel each other, and so they form a lattice of normal
states vortices, which can be observed and from which the values of different parameters can be determined.
As seen before, the phase can become a multivalued function depending on the position in the material,
and therefore the symmetry broken by this phase transition is the phase invariance. We can also see from
that gradients in the phase in the bulk of the material can lead to superconducting current density.

®o
2ﬂ£27

2.4 BCS Theory of Superconductivity

We have discussed macroscopic properties of superconductors, but have not stated a microscopic reasoning
behind the occurance of the superconducting state. Indeed, superconductivity has evaded proper under-
standing for a long time, with first hints about its nature coming from the observation of so called isotope
effect.
When the transition temperature was measured for different isotopes of the same element, it was observed
that

To o M—¢

where M is the mass of the isotope, T is its transition temperature of superconducting transition and
a % The suggestion how to explain that the mass of the atoms has significance was to assume that the
electronic interaction with phonons has some importance. This lead to the development of the Cooper pair
concept.

2.4.1 Cooper Pairs

Cooper pairs are bound pairs of electrons, where the attractive interacion is mediated by the phonons of
lattice vibrations. The attraction has potential which is fairly long ranged, and therefore the electrons
can be bound at great distances, where the Coulomb repulsion is not so strong. The interaction requires
mediation of the force with non-zero momentum transfer, and therefore only the electrons close to the
Fermi surface interact. Usually, electrons within +hwp, where wp is the Debye frequency, interact and
form Cooper pairs.

Putting this all together, we can express the wavefunction of the Cooper pair as

Ve =T RY (7 — ) (01, 02)
where ﬁT is the total wavenumber of the pair, R is the position of the midpoint of the pair, 7; is the

position of the ¢th electron, o; is its spin and 1 and ¢ are the orbital and spin parts of the wavefunction,
respectively. Cooper suggested that ¢ corresponds to a L = 0 (s-state) spherical harmonic, which requires
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the spin part ¢ to be anti-symmetric under the electron exchange. The energy of the Cooper pair could
then be calculated as
E = —2hwpe Y/ sersI?9(Ey)

where g.7y is the coupling constant for electron-phonon scattering and g(Ey) is the electron density of
states at the Fermi energy E. Interestingly, for good metals, which have low g.ss, energy of the Cooper
pairs is higher than for worse metals, which corresponds to the experimental observation that metals such
as gold or platinum do not superconduct.

2.4.2 Coherent States

To make further progress, we introduce the concept of coherent states. Coherent states are eigenstates of
the so called annihilation operator a, which is an operator that removes one quantum of certain particle
from the system. Let |n > be a state containing n particles of some kind, and let @ be the annihilation
operator of these particles. Then, annihilation operator is defined to follow these rules

Vn>0:aln>=+nln—1>

aj0 >=0

Now, lets write state |a >, which will be our coherent state
a>= — >
=2

acting with annihilation operator on such state leads to

d|a>:d|0>+z a|z> Z \f|z 1>= az -1>
— Vil Vil V(@i —1)!
Reindexing the sum, we are left with
dla>=a) —li>=ala> (37)
=0 \/;'

and hence the coherent state satisfies our definition.
Now, as well as an annihilation operator, we can define a creation operator as its Hermitian conjugate a',
which is defined by properties

afln —1>=v/njn >

and so we can write

1

— (" n - = .=
@ —2>

1
In>= —=alln -1 >= (@H"o >
Vvn

2~

Therefore, we can define the coherent state as

Q a t
o >=Y" —li > Z i |0> e’ 0 >
=0 \/ZT

=0

where we identified the Taylor series of an exponential.

2.4.3 BCS Wavefunction

The state that is described by the most advanced theory of superconductivity (which is the BCS theory),
is a coherent state of Cooper pairs. Lets label a creation operator of Cooper pair with wavenumber £ as
P,I . The BCS state is defined as

|‘I’BCS >= Cl_[el1 P" |0 >
E
where ¢ is a normalization constant. This can in fact be simplified, if we notice that the pair creation as

creation of two electrons, i.e.
— ol &t
k1t —k,d

22



PX}46 - Condensed Matter Physics 11 Formulae derivation & Revision

where the arrows show two possibilities for the spin of the electrons. Hence, from the Pauli exclusion
principle,

ptpt _ (at 2 (At 2 _
PEPE_(C*T) (. )*=0

as application of two identical fermionic creation operators consecutively leads to impossible state, and
hence the state collapses to 0. Therefore, only the first two terms of the exponential remain non-zero, and
so we write

_ pT
[Wpos >=c[[(1+azPhHo> (38)
E
Importantly, even though 15% has some properties similar to bosonic creation operator, it does not obey the

same commutator relations, and therefore the Cooper pairs cannot be viewed as bosons (even though they
are often portrayed as such).
Finally, we require the state to be normalized, and therefore

< V¥pcs|¥pes >=1

< Upes|¥pes >=<0lce | [J(+azPp) | [ ]2+ a;f?]j) 0>=1

k J

For k # j, the creation and anihilation operators of the electrons and hence of the Cooper pairs are
commuting, and therefore

<\I’BCS|\PBCS >= C*C<0| H(1+a;§15,3)(1+a,315,§) |0 >=

i
= c'e <O [T (1+ ap Py + apPl +lagPBePl) 0>
E
Again, we can move the bracket for a specific k through the other operators and take it to apply directly
to the vacuum state |0 >

(1 + Q%PE + aEPET + |aE|2PEPET)|0 >= |0 > +a,;|1,3 > -|-|a,3|2|0 >

where |1z > represents the state with one Cooper pair with k. However, no other operator in the product

can create/annihilate the state with the same k, and since < 0|1 ¢ >= 0 by orthonormality, only the vacuum
states remain. Therefore

< Psipos|¥pes >= e <O T (1 + Jaz)I0 >= e [J(1 + |og?) = 1
3 i

and so we conclude that 1

[+ 1ogl?)

Therefore, the normalized BCS state can be written as (choosing ¢ to be real)

el =

|Upes >= H(l+a;ﬁ§)|0>

i

1
VI + o)

We can move the normalization factors from the first product and distribute them to appropriate terms in
the second product to obtain

1 oy
U >= + k 0>
| BCS H <\/1+ |aE|2 \/1+ |aE|2> |

E

Labeling
1

V14 lag?

u

S
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and . oy
Vo = ——————
k L+ o2
leaves us with .
Wpes >= [ (us + v} g)|o > (39)

k

for the normalized BCS state. We should note that here, |ug|* +|vz|* = 1, and hence we can interpret |uz|?

and |v,;|2 as the probabilities of the Cooper pair state with & to be unoccupied/occupied, respectively.
2.4.4 BCS Hamiltonian
The energy of the BCS state is calculated via the BCS Hamiltonian, which has form
& _ Ao 2 AT P
HBCS = ZGECE,UCEJ — |geff| ZP;P;, (40)
ko i

It is not explicitly done here, but by applying this Hamiltonian to the BCS state and minimizing the
resultant energy with respect to parameters u; and v; under the constraint that |uz|* + |vz|* = 1 leads to
following solution for the parameters

1 € — [
2= (14 & 41
1 € — [
2 k
2 =2 (1= 42
et = 5 (1- 52) (12)
where
E; = (GE —p)?+ A%
and

Ap=1gers Y ugvs
7

Here, A can be associated with the band gap that forms during the superconducting transition and that
protects the Cooper pairs from disjoining back to free electrons. Furthermore, any other scattering of elec-
trons have tobe accompanied by opposite scattering of the other electron in pair (since there is usually not
enough energy to destroy the whole pair) and hence the scattering cannot decrease the momentum /energy
of the pair overall. This is the reasoning behind zero electrical resistance of the superconductors.

For a BCS theory, we can go further and have some approximate predictions on value of Ag. It turns out
that the band gap is k independent and at 7' = 0 has value

A~ 2the_1/)‘

where A = | ggf rl9(Ey) is the previously mentioned coupling parameter (it approximately takes the value
of single Cooper pair, as seen before). For T' # 0, the dependence is more complicated, and comes up from
solution of normalization condition

o g JETA?
1= /\/ de tanh
0 Ve + A2 kgT

For temperature close to the transition temperature T, we expect the band-gap to be small. Then, the
integral can be approximately solved to give

kgTe = 1.13hwpe/* (43)

which gives prediction on the BCS transition temperature.

2.4.5 Evidence For Presence of the Band Gap

There are several experimental observations that support the existence of the band gap. These are now
briefly discussed.
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Heat Capacity Close to the transition temperature, the pairs can be destroyed by scattering, and the
destruction of the pairs adds to the thermal capacity of the sample by factor e=2/(*5T)  This can be
observed directly.

Optical Absorption Photons with energy lower than twice the band gap energy cannot excite the pairs
of electron accross the band gap and hence cannot propagate by absorption and reemission through the
material. Therefore, they are almost perfectly reflected from the material. The position of the absorption
edge can be measured and the band gap can be measured from it.

Electron Tunneling The tunneling of electrons under certain applied voltage cannot occur for voltages
corresponding to energies lower than the band gap. The tunneling offset again corresponds to the band
gap and it can be measured.

2.5 Josephson Junction

One of the most useful superconducting devices is called the Josephson junction. We will now explain
briefly what is the principle behind its function and describe the three operation modes - DC and AC and
inverse AC.

The Josephson junction consists of two superconducting materials, joined by a layer of insulating (SIS) or
non-superconducting (normal, SNS) material. There can be a phase difference between the phases of the
wavefunctions in the two superconducting materials

¢p=01 -0,

which leads to non-zero value of the tunneling current through the junction. The current from 1 to 2 is
proportional to }
I x e

while the opposite current is only proportional to

Iy x e i
Hence the total current is proportional to
I x Il - IQ
and so we can write
I=1Igsing (44)

where Ig is some amplitude of the current.
Next, we can determine the energy the current is transported through, in order to find the voltage the
current is transported through. We can determine the energy of the carriers from their wavefunction as

v =indw = mﬁ(woe“’) = —h%

ot ot v

and therefore energy difference between 1 and 2 is

9(61 — 62) 9¢

ey = —p L 72)  p 2"
aTe ot ot
The energy difference is related to the voltage across the junction by €; — ea = gV where ¢ is the charge of
the superconducting charge carriers, in our case the Cooper pairs with ¢ = —2e. Therefore
h 0¢
= —— 45
2e Ot (45)

Now, the phase difference can be influenced by the magnetic field applied to the junction, if the junction
is part of a loop of superconducting material. Hence, for the DC effect, when % = 0, there is a current,
which periodically increases and decreases with increasing magnetic field applied to the junction.

In the AC effect, constant voltage is applied to the junction. Then, from

_ 2eV

o) Tt’i'%
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2eV

Marking w = =%

, We can write
I = I sin(wt + ¢y)

and hence we have AC current through element with DC voltage applied to it.
In the inverse AC effect, besides a constant voltage, an high frequency oscillating voltage is applied on top
of it, so that

V=Vo+Vyy COS(wrft)

Hence 9%eVr %V,
b= €h 04y ;w:; sin(wy ¢t) + ¢o
and so the current through the junction is
Ve .
I = Igsin (wt 4ot 2 sin(w, ft) + ¢0> (46)
‘/0 Wrf
This can be written as series expansion
= 2eV,
r=1s 3 (0 (G ) sl nanp)t + o
n—-—oo
where J,, are the Bessel functions. Noticable, whenever w = nw, s, i.e. when
h
V() = 7wrf n
2e

the current is purely DC. This causes a peaks in the IV characteristic of the junction, which can be observed
and hence the voltage across the junction can be well determined.

2.5.1 Real Josephson Junction

In a real junction, the normal current and capacitance effects have to be taken into effect. Simulating these
by a resistor and capacitor connected in parallel to the ideal Josephson junction leads to equation

. V dv
I:ISSIH¢+§+CE

and in terms of the phase difference

hodp  hC B¢

I=1,s 4o Y
o+ 5 Ra T 9e d

which can be recast as
hC d2¢ h do d

Sed = aeRdr gl 10 Iseosd)

which can be viewed as en equation of motion for particle at position ¢ with mass m = % in potential
u = —I¢p—Igcos¢ with drag force — 2§R %. There are then 2 cases. In the case when Ig < I, the potential

is that of downward slope with no stable minima, leading to continuous increase in the value of the phase
over time. On the other hand, for Is > I, the potential has local minima where the phase stops increasing,
and DC Josephson effect is observed.

The Josephson junction can be used to measure magnetic fields to great accuracy, and it is used in the
SQUID interferometers, which are the commonly used to analyze small variations in magnetic fields.

2.6 Unconventional Superconductors and Applications

Throughout this module, we were only able to theoretically describe the type I superconductors, which have
critical temperatures always below 30 —40K. However, most useful type of superconductors are unexplained
superconductors such as cuprates with critical temperatures up to 150K, so up to temperatures of liquid
nitrogen. Besides cuprates, organic, iron based or heavy fermion based superconductors are also being
researched.

From what can be measured, we know that the charge carriers are still electron pairs, the Meissner effect
(perfect diamagnetism) still takes place and the materials still have zero electrical resistance. However, the
coupling is different from classical BCS theory. Some ideas for the differences include possible different
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symmetries for the Cooper pairs, i.e. the pairs in these materials might form other than L = 0 s-states.
Some clues also lie in the very common anti-ferromagnetism present in these materials.

So far, the highest temperature superconductor was metallic hydrogen ant T¢ = 203K and 100 — 200GPa.
Problem with the high temperature superconductors is that they are usually ceramics, and hence much less
viable for any form of manufacturing.

However, some applications for superconductors are viable. The SQUIDs are used for magnetisation mea-
surements, MRI scanners use superconducting coils to produce high, steady magnetic field, and some
advanced electrical power management (spike protection, flywheel and superconducting energy storage) is
carried out using superconductors. Also, maglev trains use superconductors.

3 Optical Properties of Materials

During the last section of the module, we will explore some of the optical properties of the materials.
Since we are able to produce electromagnetic radiation (light) at very different energy scales, the physics
of light in materials at different frequencies varies greatly as well. For low energy, big wavelength light,
it usually suffices to use classical physics to describe the material response. However, for higher energy,
quantum physics has to be applied in order to obtain accurate results. We will start with the classical
physics approach.

3.1 Classical Optics

Classical optics follow from the Maxwell equations in material

V-D=p (47)

V-B=0 (48)
. 9B

VxE_—E (49)
. . 8D

where D is the electric displacement field, B is the magnetic induction, E is the electric field, H is the
magnetic field, p is the free charge density and j is the free current density. Furthermore, in linear materials,
we write the following constitutive relations

D=¢E (51)
B=puH (52)
j=9E (53)

where € is the permitivity of the medium, u is the permeability of the medium and g is the conductivity of
the medium, all of which we take as material constants.
Taking curl of leads to

ﬂ . ﬁ B - o (- 8D
VXx(VXE)=V(V-E)-V?E=—-—(VxB)=—p— |j+ =
ot ot

where I used (50) and (52)). Using (51) and (47)

v (g) _V2E = —u% <j+ %f)

Assuming that the material is overall neutral (p = 0) and applying , we finally arrive to expression

- OE O*E
2
VE_,ugat +ueat2

(54)

which is a damped wave equation for E. We can try to find 1D wave-solution of form

—

E = E'Oei(kacfwt)
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which leads to dispersion relation
—k? = —ipgw — pew?
w
K = pe (w? +i22) (55)
€
and we see that k£ will have an imaginary part, leading to presence of exponential decay of the wave while
in the material, as long as it has non-zero conductivity g. We can also use the refraction index to express
the same information, with refraction index defined as

ck
w

n =

Separating the real and imaginary component of the refraction index as n = n, + ix leads to wave

E — E’Oei(wnz/cfwt) — E’Oefmux/cei(nrwx/cfwt)

The intensity of the light, which corresponds to the energy transferred per unit area by the light, is
proportional to the square of the magnitude of the electric field, and so

T x |E’|2 x ef2nwx/c

—Qax

and we have a intensity decay I e with a = 2kw/c.

3.1.1 Dipole Oscillator Model

A density of electric dipole moment in the material can be expressed by the polarization field ]3, which in
linear materials follows
P=xE

where x is the susceptibility of the material, and €y3(1 + x) = €. A dipole can be present in the material for
various reasons, and under the action of external wave-like electric field, it responds by harmonic oscillations.
Suppose that we have dipole moment due to electron oscillating around some equilibrium position with
frequency wg. Also assume there is damping of the motion present, with damping constant v, so that the
equation of motion of the position of the electron & away from the equilibrium is

>z

A7
My = —myd—:; —eE — mwii (56)

Suppose that the driving field E is wave-like, i.e. E= Ege_i“t. The steady-state response of the oscillator
will be wave-like with the same frequency, so that & = Fye !, and hence

.
—mw?F = myiwF — eE — mwi®

Hence Z || E and so we can work with magnitudes o = |Zo| and Eo = |Eq|

m(wo — w?)zo — minwry = —eEy
—eF
T = —5—2—
07 (W —w?) —iw

The induced dipole moment can be written as p = gz = —exq (it is parallel to E again) and the polarization
field can be written as dipole moment density, which is obtained by multiplying dipole moment per electron
p by the density of electrons N, and so we have

62NTE° Ne*Ey [ (w3 — w?) +iyw
P:Np:—eNZL’OZw2_W2_Z, = 2 _,9\2 1 ~2,2
: o= m \B -t

Hence, the susceptibility is obtained by xy = E% and the permitivity is obtained as

oNe? [ (wi — w?) + iyw (57)
m (W — w?)? + 72w?

€
e=e(l+x) =€+

During the resonance (w = wg), the permitivity becomes highly imaginary, which corresponds to high
absorption of the waves.

Sometimes, we can add an additional term €’ to the expression for €, which describes the behaviour of the
permitivity on scales different from the oscillator resonance scale.
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3.1.2 Free Electron Model

Consider now a material where the electrons are relatively free, but there is a finite conductance of the
material, and so the electrons have a certain maximum velocity at which they can travel. This is a good
model for interactions such as intraband absorption, where electrons in half-filled band (such as in metals)
interact with incident radiation. .

Let the electron have a momentum p and let it be under the force f. Also, let there be an average scattering
time 7 in which the momentum of the electron is reset. Then, Newton’s second law can be written as

p _ > P
dt f T
This can be integrated using the integrating factor method.

— 4+ f

dp E:—»
dt 1

Suppose that this is a result of a differentiation of product of functions p and g

d(pg)

=h
dt
dp  dg
— —p=nh
a?
dp 1ldg
—_— 4+ - h
it g dt
In our case
ldg 1
gdt T
So that )
g:e?
And hence
Ad_'+1 £, Af—.’
€ dt Te p=e
d t = t -
g (77)=ei

For an oscillating field

SO

p=—eEge™ T +— v it
b 1w
and so we recover oscillations of the momentum
N —6EOT s
e (58)
The velocity of the electrons is given as
o 4
U=
m*

where m* is the effective mass of the electrons (see later). Then, the current density can be expressed as

92
N@ EOT —twt __ 9dp E —twt

i=N(—e)f= ——2 =
J (=e)d m*(1 —wr) 1—dwr ¢

where gp is the so called Drude conductivity. We can then recast this as a standard Ohm’s law with
imaginary conductivity g,

=,

J= 9w
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where E = Eye~* is the applied field and

G = 9o
Y1 —wt
Using , we can obtain
. Gw
€r = €r oo T 1—
Wep

where €, o is the limit of the relative permittivity at high frequency. Then

2

. 9o Wy
€r N €r00 + . = €r,00 — €r,00 B} W
(1 — iwT)(wep) w? +i%
where
Ne?
Wp = —+
€r,00€0M

is called the plasma frequency, and corresponds to the electron-plasma oscillations.

For good metals, the scattering time is very long, and hence

2
w
€ R €r o0 (1 — w—g)

Also, for good metals wy, is big, and so the refractive index

n & L/e

is pure imaginary, and we have a strong reflection, as expected for metals.

3.2 Tight Binding Model

Many optical properties of materials arise from their quantum nature. In this part, we will explore the
tight binding structure of crystals and its implications for the optical properties of crystals.
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3.2.2 Tight-Binding State

Suppose now that electron exist in the lattice, but are mostly localized around the lattice sites. Then, an
accurate description of the electron state is

07 >= S e® o7 Fy) > (61)

where ﬁ factor is due to normalization and ¢(7) is a atomic orbital wavefunction (of some kind, i.e. 1s
or 2p) for atom centered on the origin. We can check that

. L1 I,

|\I’(’I_“+ Ry) >= E ek _N|¢(F+ Rz — Rz) >=
N Y| L

=) e finett (R’-‘_Rm)—,—NW(F— (Ri — Rm)) >

Reindexing the sum Rj; — R = -'5 (for infinite lattice) and factoring out the exponential factor leads to

_ — ] . o o
B+ F)| = e 37 e e (7~ Bp) >= e Fnw(7) >

- vN
so this state is a valid Bloch state. Now, suppose that the Hamiltonian for the system is given by
< ¢(M)|H|$(7) >= Eq

Ra #0:< ¢(M|H|G( + R) >=< (7| H|$(7 ~ Rin) >= 100
where @ is the vector pointing to the nearest neighbour. This encapsulates the idea that there is only a

small overlap of nearest neighbour orbitals that leads to potential electron transport/band formation.
Acting with such Hamiltonian on the tight binding state, as defined in leads to

By =< U(7)|H|T(7) >= — Z < (7 —iF-Ba oik-Ros f| (7 — Rz >=

1 . L B, 1 i i
=N > et < g7 — Ra)|H|p(F — Br) >= < > M =R (By55 5 — 165 mea) =

A,
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1 2 2 o -
=% Z Ey—t (e’k'a + e_’k'a) = Ey — 2tcos(k - @) (62)
7

Hence, we have a dispersion relation for the electrons in the tight binding model. This dispersion relation
characterizes one band of electrons present in the material. The bandwidth of this band is AE = 4¢ and
the band is centered around Ej.

3.2.3 Effective Mass

For free electron, the mass can be established from the free energy of the electron Ey = % by derivative
with respect to the wavenumber

I 1>
m= 82E; = 82(ﬁ2k2)
_Bkg 2m
kT

In tight binding model, the effective mass of the electron is derived analogously, but Ej, is used instead of
Ey, so that

n’ h’
= Bgﬁk = 2ta? cos(ka)

For small wavenumber k, this can be approximated to the first order in k as

h2
~ 2ta?

*

which is constant. To the second order of accuracy, we could write

I I k2a?
* ~ 1
" 2ta? (1 - £2%) 7 2ta? ( T3 )

and hence we see that the effective mass tends to increase for small k.

3.2.4 Band Character

The sign of the overlap integral t = — < ¢(7)|H|p(7 + @) > depends on the character of the atomic orbital
¢(7). For s type orbitals, which are symmetrical under parity exchange, ¢ is positive. But for p type
orbitals, ¢ comes out as negative, and hence the dispersion relation is different and the effective mass of
the electrons in these orbitals is negative. Also, the base energy Ey will be different for different orbitals,
giving the rise to the band structure of the materials and possibly a band gap, depending on the filling of
the bands.

Usually, the overlap of the atomic orbitals converts half of the atomic orbitals into bonding and half to
anti-bonding orbitals, with energy of the anti-bonding orbitals higher than that of the bonding orbitals.

3.3 Transition Rates
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3.3.2 Band Selection Rules

Fermi’s golden rule states that the transition rate W;_,; between bands of states is
2w
Wisg 79(1"3f)|1\/-’if|2 (63)
where the matrix element is .
Mip =< ¢5|V]¢i >

where V is the perturbing potential and ¢;,; is the initial/final state. For interaction with light, we will
use dipole approximation, where

V= Py - E= qr - Eoeiik'F
where py is the dipole moment operator, 7 is a position operator, E is the electric field, g is the charge of

the carriers, k is the wavenumber of the electric field and Eo is the amplitude of the electric field. Suppose
that the field oscillates in y direction, so that we have

V — quoeiiE-F
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In crystals, we expect ¢;/; to be Bloch waves, so that

eiEi/f'F

¢i/f = W“i/f(F)

where the v/V factor ensures normalization. Hence, the matrix element can be expressed as

Mif/ Vuf(F')ul(F')ye (ki—ky k) TEodV

Where the integration runs over the whole volume of the crystal. Importantly, we should note that for
kf — K # +k the integral goes to zero, and therefore we require that

kp— k= +k

i.e. we require the conservation of momentum. Also, the integral can be reduced to a integral over the unit
cell, multiplied by some constant. Then

M;y 0(/ uyuydV
cell

Now, we should note that y is an odd function, and the integral is only non-zero in case where product
wju; is an odd function as well. This occurs for transitions from s-type to p-type orbital, but for example
s to s or p to p transitions are forbidden in the dipole approximation.

3.3.3 Transitions Close to Band Edge

Close to the band edge for a material with direct band gap (band gap such that the smallest energy difference
between the bands is at point of zero wavevector difference), the band dispersions can be approximated as
parabolic, with energies E,, for conductance/valence band following

hk?

E.=E,
+2m*

K2k2
2ms;

E, = -

By conservation of energy, we require that a photon of energy hw causes transition between energies FE,
and E, following

K2k2 1 K2k2
hw=E.—E,=E; + —— + =E,+ — (64)
2 m:  mk 2u

C v
7;* . We can approximate the density of states for the

1
mg
transition by free density of states for electrons with mass u. For wavenumber k, free density of states for
electrons is given as

where we defined the reduced mass p by i =

where a is the size of the unit cell (cubic), V' is the volume of unit cell and the factor of 2 accounts for the
spin degeneracy. Often, we use the density of states per unit volume, which is obtained by simply dividing

by V, and leaves us with
k2
g(k)dk = —dk (65)

To transfer the density in terms of the energy, we write

dk
g(k)dk = g((E)) 5 dE
From
k= ?mw—E)
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What will be variable in our case will be the photon energy, so we will use £ = hw. Hence
a1
dE NV h 2 /hw— E,

g(B)E = — 1 (2“> (e — E,)dE

272\ /hw — B, K2

and therefore

and after simplification
3
1 [2u)\?2
From (63), we then obtain the rate of transitions close to the band edge

W¢_>f o |Mif|2\/hw — Eg

which can be experimentally verified through the absorption coefficient o oc W;_, #.

3.4 Excitons

Excitons are bound states of electrons and holes which have energy spectrum analogous to hydrogen atom.
They can form across the band gap and and there are two basic types.

Wannier-Mott excitons These excitons form over long distances in real space and have relatively low
energy (i.e. 10 meV)

Frenkel excitons These are more tightly bound pairs of electrons and holes, with higher binding energies
(i.e. 100 meV)

Importantly, excitons only form under certain temperature T, for which kT = Ej, where Ej is the binding
energy of the excitons. For higher temperatures, the random fluctuations destroy the excitons.

In hydrogen atom, the electronic spectrum follows

where Ry ~ 13.6eV is the Rydberg energy unit. However, the dynamics inside a crystal are different, as
the medium has different permittivity and the electrons have an effective mass. Since this is a bound state
of electron and hole, we need to use the reduced mass as well. This means that for exciton, the energy

spectrum follows
R R
£ X (67)

me€e2 n? n?

Ezn:

3

where p is the reduced mass, m, is the vacuum electron mass and ¢, is the relative permittivity of the
medium. Also, we defined the specific Rydberg constant R, = —F—. Since €, is usually of order of 10, the

energy scale is greatly reduced, and the excitonic effects are seen as peaks close to the band gap absorption
edge.

3.5 Quantum Confinement
3.5.1 Spectrum of Quantum Wells

Consider a 1D quantum system which is restricted to the region of length L, where it is free to move. The
boundary conditions and Schrédinger equation lead to energy spectrum

nr?
" o (68)
In 2 independent dimensions, this generalizes to
mr? .

and similarly for 3 dimensions. Here, n,, and n, are two independent quantum numbers.
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3.5.2 Absorption of Quantum Wells

In real materials, doping can create confinement in all dimensions. Quantum wells create confinement in
one direction, quantum wires confine in two dimensions and quantum dots confine in all three directions.
In the unconfined directions, the electrons still form a continuum of states, but in confined direction, the
states are discretized.

The state of the electrons can be written as product of the Bloch state and of the discretized wavefunction

¥ = (e (2)

1
—u
VA
where I assumed the confinement in the z direction, ¢, (z) is the quantum confined wavefunction and A
is the area of the quantum well. There is an important consequence in the selection rules for transitions
between two quantum wells. Suppose that the initial state is

1 2 .
U, = ——eF Ty (R pp (2
7 ()
where h signifies hole index (electron starts in the valence band, where it will leave hole behind, confined).

and the final state is )

¥y = ﬁelkfiruf(f')(be,n’ (2)
Hence .
M << wi|E - Flup >< de nr|Pnn >
Hence, we have a 2D version of previous selection rules, but we have additional selection rule for transition
between the levels of the confined spectrum. Since all the levels are mutually orthogonal, the only transition
can occur when n = n', i.e. between corresponding levels of the quantum well.

3.5.3 Confined Density of States and Transition Rate

Since the continuum of states is only in reduced number of dimensions, the density of states is also signifi-
cantly different for confined systems.
For two-dimensional systems, the density of states is

2rkdk  k
TR Pk
2r)? =

The energy of the two dimensional system absorption can be written as

K2k2 Kg?
E=F,+—" 4+ " p?
ot 2/ + 2,uL2n

where k is in 2 dimensions only. The dispersion is still quadratic, so

hin? 121
k:\/E_Eg_QuLQnQ ?

g(k)dk = 2

dk _
E 9\ [E— B, - bxn
and i
I
E)dE = g(k(E))S=dE = -
§(E)IE = g(K(E)) G =

which is independent of the energy. Hence, in absorption coefficient, we see plateaus of constant absorption,
followed by quick steps, which correspond to available jump between levels of quantum well. Importantly,
before we reach energy to jump between 1st confined level, nearly no absorption occurs.

For 2D confinement and 1D continuum, the situation is similar, but g(F) o \/%_c, and so the absorption
decreases after each jump.

One interesting effect of the confinement is that the excitons become confined aswell, leading to altered

spectrum (in this case for 1D confinement)
R,
1 2
(n—3)

which is much stronger than no confinement for small n.

E,=-
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3.6 Luminescence

Luminescence occurs when the electrons decay from the conduction band to the valence band across the
band gap, producing a photon of visible light in the process. Depending on how the electron got into
the conduction band, we differentiate between photoluminescence (when the electron was excited to the
conductance band from valence band by photon of light) and electroluminescence (when the electron was
injected by electric current).

In the band, the electrons decay through the continuum of states, and only produce very low energy, thermal
photons. Once the electrons gets to the band edge, it can further only decay across the band gap, and this
will be of interest to us.

3.6.1 Luminescence Intensity

While for absorption of light, we could be fairly certain that there is a electron in a valence band and a free
state in the conduction band, we can never be sure that there is an electron in the conductance band and
free state in the valence band for it to decay to and emit light. Therefore, besides the rate from Fermi’s
golden rule, we need to include the probability of occupation of conductance state by electron and valence
state by hole. Both hole and electron are fermions, and so we use the Fermi-Dirac distribution for the
occupation probability, leading to proportionality

1
(e(Be=w)/(ksT) 4 1) (e(Pa—w)/(ksT) 4 1)

I o< Wisy s frfeg(hw) oc | M;g|? (70)

where f, /, is the electron/hole Fermi-Dirac distribution, u is the chemical potential of the system, E,
is the relative energy of the electron/hole, taken from the bottom/top of the conductance/valence band,
respectively, and g is the joint density of states.

We will further assume that the carried concentrations are low, and therefore both f, and f; are small,
which corresponds to E, — u and Ej, — u being relatively big compared to k7. Then, we can approximate
the expression as

T |Mz.f|2g(hw)e—(Ee—u)/(kBT)e—(Eh—u)/(kBT) x |M,~f|Qg(hw)e‘(Ee+Eh>/(kBT)
By conservation of energy
hw=E;+E.+ Ep

and so
I x |Mz'f|29(hw)67(hw7E9)/(kBT)

as shown in (66), g(fiw) o« \/fiw — E,, and hence
I XX |Mif|2\/m€f(hw7Eg)/(kBT) (71)

The main difference to the absorption is in the exponential factor, that occurs due to sparse population
of the conduction band by the electrons. In absorption, this is not a problem, and hence the absorption
spectrum is much wider, compared to the luminescence emission spectrum.

3.6.2 Monolayers

In monolayers, the band structure depends on the size of the layer, as there is no pure bulk region of the
crystal. This significantly influences the structure of the bands and density of states, and in turn the optical
properties are changed and can be tuned to serve specific purposes.

3.7 Polaritons

Consider now the oscillations of the ions in the lattice of the crystal. For transverse optical modes, the
oscillations can be driven by an electric field of a photon. In turn, the oscilliations can create a photon, and
when a resonant frequency is hit, the photon-oscillation(phonon) system can become quasi-stable. This
quasi-stable particle is called polariton.
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3.7.1 Photon-Polariton Interaction

The interaction between photon and a polariton can be modelled just as interaction between classical dipole
moment and photon, as in . As the natural frequency of the oscillator, we use the frequency of the
phonon transverse optical mode, and as the mass, we use the reduced mass of the ions in the optical mode.
Then, the permittivity of the medium can be estimated as

' 60N€2 1
€E=¢€y+€ + 3 O
7 Wro — W7 — 1w

It is sometimes useful to reparametrize this expression in terms of the limits for static DC field (w — 0)
and for high frequency w — oo. For high frequency

!
€ — €5 N €y T €

For low frequency

' 60N€2 1 €0 N€2
€E—> e "€+ €+ — T €t ——5—
B Wi HWTo
Therefore, we can express
2
60N€ 9
T (€5 = €0 )70 (72)

Hence, the permittivity dependence can be expressed entirely in terms of well measurable quantities

2
— w
€ = €x T (265 60;) 1?0 (73)
Wpo — W —1yw
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