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1 Lagrangian Mechanics & Formalism

1.1 Principle of Least Action

While Newtonian mechanics uses mainly the geometry of the space to describe and derive motion of objects
in this space, constraining the possible paths of the system by Newton’s three laws, Lagrangian mechanics
chooses a more synthetic approach.
The basic premise of the theory is that behaviour of any mechanical system can be derived from one scalar
function of position of components of the system, velocities of the system and time. This function is a
called the lagrangian and is denoted as L (q1, q2, ..., q̇1, q̇2, ..., t), where qn is some position coordinate and

q̇n =
dqn
dt

is the velocity in this coordinate direction, and t is the time. In order to be able to derive the behaviour
of the system from this function, we need to introduce some type of constraints on which paths can the
system take. In the case of lagrangian mechanics, the principle of least action is chosen. The action is
defined as

A =

∫ t2

t1

L dt (1)

for path from point q11, q21, ..., t1 to q12, q22, ..., t2. The principle of least action (also called Hamilton’s
principle of least action) then states that out of all paths possible between the two points, the system
evolves in a path that minimizes the action A. Later, this principle was generalized to the condition that
state chooses simply the action that is extremal - either maximal or minimal.
This is the guiding principle of lagrangian mechanics and we can see that this constraint is much more
general than the quite specific Newton’s laws. This is also the reason why lagrangian mechanics can be
easily extended to include special relativity or quantum mechanics - the principle lagrangian function is
simply changed to predict same system paths as given theory and rest of the formalism remains the same.
We will now not go into detail how the lagrangian is derived for different systems, as it will later follow
from some of our formalism. To see these derivations, I suggest Landau & Lifshitz Mechanics.
For now, we define the lagrangian in classical mechanics as

L = T − V (2)

where T is the total kinetic energy of the system, and V is the total potential energy of the system (both
stored and external).
To illustrate the point in a specific example, consider a small object of mass m inside a uniform gravitational
field V = mgx in single direction up or down, so that

L =
1

2
mẋ2 −mgx

The action for it to travel from point (x1, t1) to point (x2, t2) is

A =

∫ t2

t1

(
1

2
mẋ2 −mgx

)
dt

Assume that the path x(t) leads from (x1, t1) to (x2, t2) and that it minimizes the action A. Then,
assume we add a small variation to the path δx(t), such that δx(t1) = δx(t2) = 0 and that the function is
everywhere very small. If x(t) is truly the minimal path, then A will remain approximately the same for
all small variations δx(t).
Since the new path is x′(t) = x(t) + δx(t), the velocity is ẋ′(t) = ẋ+ δẋ(t).
Hence

A =

∫ t2

t1

(
1

2
m(ẋ+ δẋ)2 −mg(x+ δx)

)
And thus, subtracting the first equation (and disregarding higher order variations δẋ2)

0 =

∫ t2

t1

(mẋδẋ−mgδx) dt

The first part of the integral can be integrated by partes as∫ t2

t1

mẋδẋdt = [mẋδx]
t2
t1
−
∫ t2

t1

mẍδxdt

2
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Since we required that δx(t1) = δx(t2) = 0, we have

[mẋδx]t2t1 = 0

And the integral therefore is ∫ t2

t1

mẋδẋdt = −
∫ t2

t1

mẍδxdt

Substituting into the original integral

0 =

∫ t2

t1

(−mẍ−mg) δxdt

As we can choose any small variation and the equation must still apply, we must have

−mẍ−mg = 0

Or
ẍ = −g

which is known result of steady acceleration in constant gravitational field.

1.2 Euler-Lagrange Equations

Lagrange equations are the result of generalisation of the previous procedure for a general lagrangian
L (~q, ~̇q, t), where I concantated the different coordinates qn and velocities q̇n into a vector ~q and ~̇q. Again,
consider an optimal path ~q(t) for which

A =

∫ t2

t1

L (~q, ~̇q, t)dt

A small variation δ~q(t) results in a path ~p(t) = ~q(t) + δ~q(t) and velocity ~̇p(t) = ~̇q(t) + δ~̇q(t).
The lagrangian for this path ~p can be expressed as

L (~p, ~̇p, t) ≈ L (~q, ~̇q, t) +

N∑
n=1

∂L

∂qn
δqn +

N∑
n=1

∂L

∂q̇n
δq̇n

But the action does not change if ~q(t) is the minimal path, so

A =

∫ t2

t1

L (~q, ~̇q, t)dt+

∫ t2

t1

N∑
n=1

∂L

∂qn
δqndt+

∫ t2

t1

N∑
n=1

∂L

∂q̇n
δq̇ndt

Subtracting the original equation and assuming that we are dealing with less than infinite amount of
dimensions N , we can write

0 =

N∑
n=1

(∫ t2

t1

∂L

∂qn
δqndt+

∫ t2

t1

∂L

∂q̇n
δq̇ndt

)
The second integral by partes is∫ t2

t1

∂L

∂q̇n
δq̇ndt =

[
∂L

∂q̇n
δqn

]t2
t1

−
∫ t2

t1

d

dt

(
∂L

∂q̇n

)
δqndt

Again, since we search for path from (~q1, t1) to (~q2, t2), we need that δ~q(t1) = δ~q(t2) = ~0, so we have∫ t2

t1

∂L

∂q̇n
δq̇ndt = −

∫ t2

t1

d

dt

(
∂L

∂q̇n

)
δqndt

Hence the original condition becomes

0 =

N∑
n=1

∫ t2

t1

[
∂L

∂qn
− d

dt

(
∂L

∂q̇n

)]
δqndt

3
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Since we can set any variation δqn to anything small, this equation can only apply for all those δqn if

∀n :
∂L

∂qn
− d

dt

∂L

∂q̇n
= 0 (3)

These equations are called the Euler-Lagrange equations and are the fundamental building blocks for the
lagrangian and hamiltonian mechanics.
Just from using these and considering the symmetry arguments and Galileian transformations, we could
derive the form of lagrangian in classical mechanics, but we will not do this here.
It is important to note that the number of dimensions N in the lagrangian does not necesserily indicate
the number of spatial dimensions - for example two particle moving in 1 dimension need two coordinates
and two velocities to describe them. Generally, the number N is

N =

n∑
i=1

di

where di is the number of spatial dimensions in the ith particle out of n particles move.

1.3 Momentum and force

From the form of lagrangian for classical mechanics for one particle of mass m,

L =
1

2
m(~̇q)2 − V (~q)

we derive
∂L

∂qn
= − ∂V

∂qn

d

dt

∂L

∂q̇n
=

d

dt
mq̇n

Hence

− ∂V
∂qn

=
d

dt
mq̇n

we can recognize mq̇n as the components of Newtonian momentum and − ∂V
∂qn

as components of a Newtonian
force. Therefore, we derived Newton’s second law

~F =
d~p

dt

Hence, we have

pi =
∂L

∂q̇i

Fi =
∂L

∂qi

1.4 Pendulum

The kinetic energy of a small mass on a light rod of fixed length in gravitational field in vertical direction
down is

T =
1

2
ml2θ̇2

where θ is the angle between the gravitational field direction and the rod. The potential energy is

V = mgl(1− cos θ)

Hence, the Euler-Lagrange equations are

∂L

∂θ
= −∂V

∂θ
= mgl

∂ cos θ

∂θ
= −mgl sin θ

d

dt

∂L

∂θ̇
=

d

dt
ml2θ̇ = ml2θ̈

4
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∂L

∂θ
=

d

dt

∂L

∂θ̇

−mgl sin θ = ml2θ̈

θ̈ = −g
l

sin θ

We can check by Newtonian mechanics that this is the correct result, and we therefore see the first big
advantage of Lagrangian mechanics - we can use a number of different coordinates to describe the location
of the objects and the same equations still apply.

1.5 Cycloid

A cycloid is a curve traced by point on a circumference of a rolling circle. It can be parametrically expressed
using the total angle rolled by the circle θ as

y = R(1 + cos θ)

x = R(θ − sin θ)

As a coordinate, we can use the distance along the cycloid path, u, with

du =
√
dx2 + dy2 = dθ

√(
dx

dθ

)2

+

(
dy

dθ

)2

= Rdθ

√
(1− cos θ)2 + sin2 θ = Rdθ

√
1− 2 cos θ + 1 =

=
√

2Rdθ
√

1− cos θ =
√

2R
√

2 sin

(
θ

2

)
dθ = 2R sin

(
θ

2

)
dθ

We want the u to have 0 at the bottom of the cycloid, where θ = π, and to be then increasing in the
direction of increasing x. Therefore, we can express u as

u =

∫ θ

π

du =

∫ θ

π

2R sin

(
θ

2

)
dθ = 2R

[
−2 cos

(
θ

2

)]θ
π

= 4R

(
cos
(π

2

)
− cos

(
θ

2

))
= −4R cos

(
θ

2

)
Now, consider a particle moving along the cycloidal path in a homogeneous gravitational field. The La-
grangian is

L = T −V =
1

2
mu̇2−mgy =

1

2
mu̇2−mgR(1 + cos θ) = m

(
1

2
u̇2 − 2gR cos2

(
θ

2

))
= m

(
1

2
u̇2 − 1

8R
gu2
)

Hence, the Euler-Lagrange equation is
∂L

∂u
=

d

dt

∂L

∂u̇

−mgu
4R

=
d

dt
mu̇

ü = − g

4R
u

This is a equation of perfect harmonic motion - while pendulum follows harmonic motion only approx-
imately, particle oscillating on a cycloidal path follows perfect harmonic motion with angular frequency√

g
4R , independent of amplitude even for big amplitudes.

2 Hamiltonian Mechanics

While Lagrangian mechanics uses positions and velocities of particles, it is often more useful to describe
the system in terms of component positions and momenta.
This is done in Hamilton’s formulation of mechanics, which starts from the definition of Hamiltonian.

5
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2.1 Hamiltonian

Hamiltonian is defined as

H =

(∑
i

q̇i
∂L

∂q̇i

)
−L (4)

One important property of Hamiltonian follows from its time dependence

dH

dt
=

d

dt

∑
i

(
q̇i
∂L

∂q̇i

)
− dL

dt
=
∑
i

(
dq̇i
dt

∂L

∂q̇i
+ q̇i

d

dt

∂L

∂q̇i

)
− ∂L

∂t
−
∑
i

∂L

∂qi

dqi
dt
−
∑
i

∂L

∂q̇i

dq̇i
dt

Using the Euler-Lagrange equation

dH

dt
=
∑
i

q̈i
∂L

∂q̇i
+
∑
i

q̇i
∂L

∂qi
− ∂L

∂t
−
∑
i

q̇i
∂L

∂qi
−
∑
i

q̈i
∂L

∂q̇i

Hence
dH

dt
= −∂L

∂t
(5)

Hence the hamiltonian is only time dependent if the lagrangian is explicitly time dependent, which makes
hamiltonian a useful constant for many cases.
Lets further explore the meaning of hamiltonian for a classical system with one particle, where L =
1
2mẋ

2 − V (x). Here

H = ẋ
∂L

∂ẋ
−L = ẋmẋ− 1

2
mẋ2 + V (x) =

1

2
mẋ2 + V (x)

Hence, the hamiltonian corresponds to the total energy of the system. Hamiltonian therefore has even a
physical interpretation, while lagrangian does not.

2.2 Hamilton’s equations

Now, assume that neither hamiltonian nor lagrangian depend explicitly on time. The small change in
lagrangian is

dL =
∑
i

∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i

Using the definition of canonical momenta pi = ∂L
∂q̇i

and E-L equation

dL =
∑
i

dpi
dt
dqi + pidq̇i =

∑
i

ṗidqi + pidq̇i

The small change in hamiltonian is

dH =
∑
i

d(q̇ipi)− dL =
∑
i

pidq̇i + q̇idpi − ṗidqi − pidq̇i =
∑
i

q̇idpi − ṗidqi

But, we could also express the change in hamiltonian explicitly as

dH =
∑
i

∂H

∂qi
dqi +

∂H

∂pi
dpi

Hence, we must have for all i

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
(6)

These equations are called Hamilton’s equations and are an alternative to E-L equations. The main
advantage is that these are total of 2N first order differential equations, while E-L equations are N second
order differential equations.
Also, we can now express the hamiltonian as function of position and momentum, rather than as function
of position and velocities, i.e. H = H(~q, ~p, t)

6
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2.3 Hamiltonian Conservation

We already shown that
dH

dt
= −∂L

∂t

However, we are now able to show one more expression for the time change of hamiltonian, using the fact
that it can be expressed as function of position and momenta only.

dH

dt
=
∂H

∂t
+
∑
i

∂H

∂qi
q̇i +

∂H

∂pi
ṗi

Using Hamilton’s equations

dH

dt
=
∂H

∂t
+
∑
i

∂H

∂qi

∂H

∂pi
+
∂H

∂pi

(
−∂H
∂qi

)
Therefore

dH

dt
=
∂H

∂t
(7)

The hamiltonian is changing only if it explicitely depends on time.

2.4 Phase Space

Phase space is a useful tool how to visualize possible states accesible to the system. It is a space of canonical
coordinates and momenta. So, for particle in 1D motion, the phase space is a space of two dimensions, with
one phase coordinate x and other px. From the shape of the trajectory of the system in the phase space,
some predictions can be made.
For example, for a simple harmonic motion

H =
1

2
mẋ2 +

1

2
kx2 =

p2x
2m

+
1

2
kx2

Since the hamiltonian does not explicitly depend on time, it is conserved. Therefore, all states on the
trajectory in the phase space satisfy

p2x
2mH

+
x2

2H
k

= 1

This is an equation of an ellipse in the phase space.
The pendulum in phase space behaves similarly for small oscillations. Once the oscillations are big, the
shape distorts from the ellipse. For oscillations that go over the top of the pivot, we have two independent
oscillating curves above and below the θ axis, one representing continuous movement forward (angle always
increasing, pθ always positive) and the other representing movement backwards.
In case of small oscillations that loose energy over time, we would than expect to see a spiral in the phase
space, ending at the origin.

2.5 Conservation Laws

From the form of Hamilton’s equation for momentum pi

ṗi = −∂H
∂qi

or Euler-Lagrange equation

ṗi =
∂L

∂qi

we can see that if the Lagrangian or Hamiltonian do not explicitly depend on the position qi, then the
momentum pi is the constant of motion. This is called the Noether’s theorem and can be applied generally
to any symmetry of the hamiltonian/lagrangian (symmetry meaning that changing some position variable
qi does not change the hamiltonian/lagrangian).
Constants of motion are useful to simplify the equations of motion created by hamiltonian/lagrangian
formalism and their connection to symmetry enables us to do only very general considerations before
predicting the behaviour of the system.

7
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2.5.1 Multiple Particles

We can describe a system of particles by the same coordinates qi as follows - first particle has position
(q11, q12, ..., q1i, ...), second (q21, q22, ..., q2i, ...) etc. So, the coordinate is generally some qji, where i goes
from 0 to number of spatial dimensions d and j goes from 1 to the number of particles n. Now assume that
the interaction potential between the particles only depends on the distance between the particles, i.e. for
any two particles k and l

Vkl = Vkl(|~qk − ~ql|)
Since the kinetic energy of the particle does not depend on the position of the particles, the force component
of a force on particle k from this potential is

Fki =
∂L

∂qki
= −∂Vkl

∂qki
= −∂Vkl(r)

∂qki

where r = |~qk − ~ql| =
√

(~qk − ~ql)2
Therefore

Fki = −∂Vkl
∂r

∂r

∂qki
= −∂Vkl

∂r

qki − qli
r

And, the force on the other particle is

Fli = −∂Vkl
∂qli

= −∂Vkl
∂r

∂r

∂qli
=
∂Vkl
∂r

qki − qli
r

= −Fki

Therefore, for any i, we have Fki = −Fli, or

~Fk = −~Fl
which is otherwise known as Newton’s third law. This can be rewritten as

∂L

∂qki
+
∂L

∂qli
= 0

This can be extended to general principle for any number of particles as
n∑
j=1

∂L

∂qji
= 0

which is equivalent with (see equations for momentum above)

n∑
j=1

∂H

∂qji
= 0

Hence
n∑
j=1

d

dt
pji = 0

d

dt

n∑
j=1

pji = 0

n∑
j=1

pji = Pi

where Pi is the total momentum of the system in the direction i, which is constant in time. Therefore, the
conservation of momentum for these central potentials is transitive.

2.5.2 Symmetries

Now consider a case when the space is somehow symmetrical, so that ∂L
∂qji

= 0 for all j (but not for all i).

Then, the equation
n∑
j=1

∂L

∂qji
= 0

is automatically satisfied and the total momentum in the direction of i is therefore conserved.
Importantly, this is true for both linear momentum and angular momentum, if there are corresponding
symmetries in conjugate coordinates.
From this principle, the conservation of angular momentum can be as well derived, considering the spherical
polar coordinate system and symmetry in rotation through angle θ or φ, respectively.

8
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2.6 Gyroscope

Gyroscopes are objects rotating around one axis and with one pivot at the axis. The position of a gyroscope
can be described by three angles - angle θ between the gyroscope axis and the z axis, angle φ between the
x axis and projection of the gyroscope axis onto the xy plane (these two are analogical with the angles in
spherical polar coordinates) and angle β determining the rotation of the gyroscope around its own axis.
Therefore, the angular velocities are ~ωθ, which always points perpendicular to the gyroscope, ~ωφ, which

always points in the k̂ direction, and ~ωβ , which points along the axis of the gyroscope.
Let l be the distance from the pivot of the gyroscope to its centre of mass, m the mass of the gyroscope, I
the moment of inertia of the gyroscope for rotation perpendicular to its axis (around the pivot) and J the
moment of inertia for rotation around the gyroscope axis (the β rotation).
While the angular speed ~ωθ is always perpendicular to the gyroscope, the angular speed ~ωφ is not. We can,
however, project the angular into perpendicular and parallel directions as

~ωφ = cos θφ̇êωβ − sin θφ̇êθ

where φ̇ = |~ωφ| and êωβ is the unit vector in the direction of the speed ~ωβ , which is along the axis of the
gyroscope.
The angular velocity due to ~ωθ can be expressed as

~ωθ = θ̇êφ

And
~ωβ = β̇êωβ

Therefore, the overall angular velocity is

~ω = θ̇êφ − sin θφ̇êθ + (β̇ + cos θφ̇)êωβ

Since all these unit vectors are perpendicular, we can express the total rotational energy as

T =
1

2

(
(~ω)2φIφ + (~ω)2θIθ + (~ω)2ωβIωβ

)
=

1

2

(
θ̇2I + sin2 θφ̇2I + (β̇ + cos θφ̇)2J

)
Now, we place the gyroscope into a homogeneous gravitational field. Choosing the plane of zero potential
as xy plane, the potential energy is

V = mgl cos θ

Hence, the lagrangian is

L =
1

2
I[θ̇2 + sin2 θφ̇2] +

1

2
J(β̇ + cos θφ̇)2 −mgl cos θ

Since the lagrangian is independent of β and φ, the conjugated momenta will be conserved. We now
determine all the momenta from the lagrangian

pθ =
∂L

∂θ̇
= Iθ̇

pβ = J(β̇ + cos θφ̇)

pφ =
∂L

∂φ̇
= I sin2 θφ̇+ J(β̇ + cos θφ̇) cos θ = I sin2 θφ̇+ pβ cos θ

Since the lagrangian has no explicit time dependence, the hamiltonian is conserved. As this is a classical
system, the hamiltonian is

H = T + V =
1

2
Iθ̇2 +

1

2
I sin2 θφ̇2 +

1

2
J(β̇ + cos θφ̇)2 +mgl cos θ =

=
1

2
Iθ̇2 +

(pφ − pβ cos θ)2

2I sin2 θ
+
p2β
2J

+mgl cos θ

Therefore, since H, pφ and pβ are all constants

θ̇2 =
2

I

(
H −

(
(pφ − pβ cos θ)2

2I sin2 θ
+
p2β
2J

+mgl cos θ

))
=

2

I
(H − Ueff (θ))

9
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where Ueff =
(pφ−pβ cos θ)2

2I sin2 θ
+

p2β
2J + mgl cos θ is the effective potentail acting on the gyroscope. Therefore

we have a differential equation for the movement of the gyroscope in θ direction

θ̇ =

√
2

I
(H − Ueff (θ))

The equations of motion for the remaining two coordinates can be derived from the Hamilton’s equations

φ̇ =
∂H

∂pφ
=
pφ − pβ cos θ

I sin2 θ

β̇ =
∂H

∂pβ
=
pφ − pβ cos θ

I sin2 θ
(− cos θ) +

pβ
J

=
pβ
J
− φ̇ cos θ

2.7 Motion in Planar Polar Coordinates

Planar Polar coordinates are defined as

r =
√
x2 + y2, φ = tan−1

(y
x

)
Or inversly

x = r cosφ, y = r sinφ

The unit vectors êr and êφ are

êr =
d~r
dr∣∣d~r
dr

∣∣ = cosφî+ sinφĵ

êφ =

d~r
dφ∣∣∣ d~rdφ ∣∣∣ = − sinφî+ cosφĵ

We can easily see that these two are orthogonal. We can also see that the position vector is

~r = rêr

The velocity vector is

~v =
d~r

dt
= ṙêr + r

dêr
dt

= ṙêr + rφ̇êφ

Hence the kinetic energy of a particle is

T =
1

2
m(~v)2 =

1

2
m(ṙ2 + r2φ̇2)

Hence the classical hamiltonian is

H = T + V =
1

2
m(ṙ2 + r2φ̇2) + V (r, φ)

We therefore have four hamilton’s equations - two for r and two for φ coordinates and momenta. For r

ṗr = −∂H
∂r

ṙ =
∂H

∂pr

And for φ

ṗφ = −∂H
∂φ

φ̇ =
∂H

∂pφ

An important observation is that if V = V (r), i.e. V is a central potential, then ṗφ = 0 and pφ is conserved.

10
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To find pr and pφ, we use explicit derivation from the lagrangian

L =
1

2
m(ṙ2 + r2φ̇2)− V (r, φ)

pr =
∂L

∂ṙ
= mṙ

pφ =
∂L

∂φ̇
= mr2φ̇

Hence, the hamiltonian can be rewritten as

H =
p2r
2m

+
p2φ

2mr2
+ V (r, φ)

Hence

ṗφ = −∂V
∂φ

ṗr =
p2φ
mr3

− ∂V

∂r

2.7.1 Central Potential

In central potentials, pφ is a constant, hence we can the hamiltonian in this potential can be written as

H =
p2r
2m

+
p2θ

2mr2
+ V (r) =

p2r
2m

+ Vc(r) + V (r) =
p2r
2m

+ Ueff (r)

where Ueff = Vc(r) + V (r) is the effective potential and Vc(r) is the centrifugal potential. To understand
the centrifugal potential, we can have a look at the change of momentum pr

ṗr =
p2φ
mr3

− ∂V

∂r
= −∂Vc

∂r
− ∂V

∂r
= −∂Ueff

∂r

Therefore, the centrifugal potential demonstrates itself as an additional force that is added to the force due
to the potential V . As the centrifugal potential is decreasing with increasing r, its derivative is negative
and therefore the force (which is in opposite direction than the derivative) points always in the direction
of the radial vector - in direction of increasing r.
Because the hamiltonian does not explicitly depend on time, it is conserved, and thus

H = const. =
p2r
2m

+ Ueff (r)

pr =
√

2m(H − Ueff (r))

2.7.2 Coulomb Potential

Among many possible forms of potential, potential of type V (r) = −αr has special importance, as it
represents both gravitational potential and potential of electric field, both from a point source.
The effective potential is then

Ueff =
p2φ

2mr2
− α

r
=

p2φ
2m

(
1

r2
− 2

αm

p2φ

1

r

)
=

p2φ
2m

(1

r
− αm

p2φ

)2

− α2m2

p4φ



Ueff =
p2φ
2m

(
1

r
− mα

p2φ

)2

− α2m

2p2φ

at infinity, this goes to zero, at zero, this goes to infinity.
Also, there is a minimum of the effective potential at

1

rmin
=
mα

p2φ

11
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rmin =
p2φ
mα

where

Umin = −α
2m

2p2φ

We can now qualitatively see that if the total energy is higher than the minimum energy, the particle
will somehow oscillate, unless the energy of the particle is so big that it can escape the potential through
increasing r.
Dependent on the particle energy, if the particle is bound (H < 0), it follows eliptical orbits, if the particle
has H = 0, it follows a parabolic orbit, and if H > 0, particle follows hyperbolic orbit. As a special case of
eliptical orbit, for H = Umin, the particle follows circular orbit (in the diagram of Ueff , it sits in the only
potential well on the bottom).

3 Matrices

3.1 Inertia Matrix

Consider a case when we describe a system of two particles with coordinates q1, which describes the position
of particle one with respect to immobile origin, and q2, which is relative position of particle two with respect
to particle one. This means that the position of particle two with respect to origin is

q′2 = q2 + q1

Hence the speed of the particle two is
q̇′2 = q̇2 + q̇1

Hence the kinetic energy of both particles is

T =
1

2
m1q̇

2
1 +

1

2
m2(q̇′2)2 =

1

2
m1q̇

2
1 +

1

2
m2(q̇1 + q̇2)2

Hence the momentum in the direction q1 (assuming no dependence of V on speed) is

p1 =
∂L

∂q̇1
=
∂T

∂q1
= m1q̇1 +m2(q̇1 + q̇2) = (m1 +m2)q̇1 +m2q̇2

We can now see that the coefficient in front of q̇1 is not dependent only on the properties of particle one -
there is some coupling with the other particle.
To generalize this notion of coupling, we could define the general momentum in direction i for j particles
as

pi =
∑
j

Mij q̇j

where Mij is some coefficient with dimensions of mass. We can clearly recognize the matrix structure in
this notation, and hence we could write

~p = M~̇q (8)

where matrix multiplication is implied and ~p and ~̇q are column vectors.
How do we find the the elements of M ? From the definition of canonical momentum (for V independent
of velocities)

pi =
∂T

∂q̇i
=
∑
j

Mij q̇j

We can now differentiate with respect ot q̇k

∂2T

∂q̇i∂q̇k
=
∑
j

Mij
∂q̇j
∂q̇k

=
∑
j

Mijδjk = Mik

where δik is the Kronecker delta.
Therefore, we have found the relation for matrix elements of Mij as

Mij =
∂2T

∂qi∂qj
(9)

12
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Hence, we can already see that Mij is a symmetrical matrix, as

Mij =
∂2T

∂qi∂qj
=

∂2T

∂qj∂qi
= Mji

We derived the inertia matrix from the expression for momentum, but we can in fact define it only for
kinetic energy as

T =
1

2
~q · ~p =

1

2

∑
i

∑
j

qiMijqj

We can easily check that this definition satisfies the momentum equation and thus is a wider definition of
M, which we call the inertia matrix.

3.2 Force Matrix

Consider a potential only dependent on the canonical coordinates V = V (~q). Also, consider that the
potential has a minimum at ~q0. This means that

∀i :
∂V

∂qi

∣∣∣∣∣
~q=~q0

= 0

Now, consider a small perturbation from the equilibrium position ~r. Using Taylor series, we can expend
the potential as

V (~q0 + ~r) ≈ V (~q0) +
∑
i

∂V

∂qi

∣∣∣∣∣
~q=~q0

ri +
1

2

∑
i

∑
j

∂2V

∂qi∂qj

∣∣∣∣∣
~q=~q0

rirj

Since we are at equilibrium, the previous equation becomes

V (~q0 + ~r) ≈ V (~q0) +
1

2

∑
i

∑
j

∂2V

∂qi∂qj

∣∣∣∣∣
~q=~q0

rirj

If the kinetic energy T does not depend explicitly on the position ~r, we can write the canonical force
corresponding to perturbation rk as

Fk =
∂L

∂rk
= − ∂V

∂rk
= −1

2

∑
i

∑
j

∂2V

∂qi∂qj

∣∣∣∣∣
~q=~q0

(
ri
∂rj
∂rk

+ rj
∂ri
∂rk

)
=

= −1

2

∑
i

∑
j

∂2V

∂qi∂qj

∣∣∣∣∣
~q=~q0

riδjk −
1

2

∑
i

∑
j

∂2V

∂qi∂qj

∣∣∣∣∣
~q=~q0

rjδik =

= −1

2

∑
i

∂2V

∂qi∂qk

∣∣∣∣∣
~q=~q0

ri +
∑
j

∂2V

∂qk∂qj

∣∣∣∣∣
~q=~q0

rj

 = −1

2

2
∑
j

∂2V

∂qj∂qk

∣∣∣∣∣
~q=~q0

rj


We could then write

Fi = −
∑
j

∂2V

∂qi∂qj

∣∣∣∣∣
~q=~q0

rj

We can again recognize the matrix form of this notation, and write (now choosing r coordinates as the
primary coordinates, and origin at the position of ~q0, so that ri → qi and ~q0 → ~0)

~F = −K~q (10)

where the elements of K are

Kij =
∂2V

∂qi∂qj

∣∣∣∣∣
~q=~0

(11)

We again see that the matrix is symmetrical.

13
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3.3 Secular Equation

We showed that the canonical momenta can be expressed as

~p = M~̇q

Similarly, the force elements are for small deviations from a minimum

~F = −K~q

By Euler-Lagrange equations, we have

~F =
d

dt
~p

If we assume constant M
~F = M~̈q

K~q = −M~̈q (12)

This is a set of equations of motion, that are coupled together. We can try a solution in form of

~q = A ~Xeiωt

where ~X is some vector giving relative directions of motion of separate particles (constant), A is some
amplitude and ω is some angular frequency. Then

~̈q = −Aω2 ~Xeiωt = −ω2~q

The equation of motion is then
K~q = Mω2~q

Hence, we have
(K− ω2M)~q = 0

and
(K− ω2M) ~X = 0 (13)

This equation is called the secular equation and has close resemblance to the eigenvalue equation for
matrices. It can be solved exactly analogously. First step is to discover that in order for some linear
combination of columns of K−ω2M to sum to zero, at least one of the columns must be a linear superposition
of the others. But, since multiplication by column vector from right is nothing else than creating a linear
superposition of the matrix columns, this is exactly what the secular equation states.
Since the columns of K− ω2M are not linearly independent the determinant of the matrix is zero, i.e.

|K− ω2M| = 0 (14)

These two equations can be used to find all ω and ~X and thus all solutions of form

~qω = Aω ~Xωe
iωt

These solutions are called the normal modes of oscillations of the system. Sometimes, it is also just the
vector ~Xω which is reffered to as the normal mode.
Since there is a specified amplitude Aω that is unknown, we can choose ~Xω either normalized or such that
is useful for us, without the loss of generality (because secular equation leads to an infinite amount of scalar

multiples of some vector ~Xω).
Other important property of the equation of motion is its linearity. Assume that ~qω and ~qν are both normal
modes, i.e.

(K− ω2M)~qω = 0, (K− ν2M)~qν = 0

Now, consider a linear superposition ~q = a~qω + b~qν . Substituting this solution into the equation of motion

K~q = −M~̈q

For any normal mode, ~̈
ωq = −ω2~q. Hence

K(a~qω + b~qν) = M(aω2~qω + bν2~qν)

This leads to
a(K− ω2M)~qω + b(K− ν2M)~qν = 0

but comparing this to the normal modes equations confirms that this equation is true, hence that the
superposition ~q is also a solution of the equation of motion. Hence, the general motion of the system can
be expressed as linear superposition of the normal modes of the oscillations.
As a consequence of this, we require that normal modes are orthogonal.

14
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3.4 Normal Modes and Symmetry

If there is a symmetry present in the system, we would expect the normal mode vectors ~Xω to obey this
symmetry. If we can express the symmetry operation by matrix S, then we would expect the symmetry
operation to change the ~Xω only by some scalar constant λ, so that

S ~Xω = λ ~Xω

or
(S− λI) ~Xω = 0

where I is the identity matrix. This is the classical eigenvalue equation, and shows that we would expect
the vectors of the normal modes to be eigenvectors of the symmetry matrix S. In general, we could replace
the matrix S by some general operator Ŝ and require

Ŝ ~Xω = λÎ ~Xω

where Î is the identity operator.
This consideration can help us find the normal modes vectors without solving the secular equation, as
solving for eigenvalues of S is usually much easier than solving the secular equation.
However, the results should be checked, as sometimes the symmetry does not give all normal modes or
does not predict exact value of each component of a normal mode vector.
Finally, for a motion with N generalized coordinates (sum of number of dimensions of motion for each
particle), we should expect N normal modes for the system (as the motion of the system cannot loose the
information about the dimensions).

3.5 Normal Modes Examples

3.5.1 Two Masses between Walls

Imagine following setup : two bodies of identical mass m are attached to three springs as follows. Spring
one leads from an immobile wall to first mass and has stiffness k, second leads from the first mass to the
second mass and has stiffness k12 and the last one leads to the immobile wall and has stiffness k again.
The position of masses can be given in their displacement from walls. Let x1 be the position of mass one
and x2 position of mass two. The kinetic energy of the system can be described as

T =
1

2
mẋ21 +

1

2
mẋ22

The potential energy can be described as

V =
1

2
kx21 +

1

2
kx22 +

1

2
k12(x1 − x2)2

Hence the inertia matrix is

M =

(
m 0
0 m

)
as the masses are not coupled. The force matrix is

K =

(
k + k12 −k12
−k12 k + k12

)
The secular equation is

(K− ω2M) ~Xω = 0

The system is clearly invariant under the exchange of particle one and two.
This means that the permutation matrix P12

P12 =

(
0 1
1 0

)
is the symmetry matrix for the system. Hence, the normal modes should be the eigenvectors of this
permutation matrix. We can recognize P12 as Pauli matrix σ1, with known eigenvalues and eigenvectors.
For exercise, these are again derived here. The eigenvalues of P12 must satisfy∣∣∣∣ −λ 1

1 −λ

∣∣∣∣ = 0

15
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λ = ±1

The eigenvectors must satisfy (
∓1 1
1 ∓1

)(
a
b

)
=

(
0
0

)
which leads to two eigenvectors

(
1
±1

)
To verify these eigenvectors, we use secular equation

(K− ω2M) ~Xω = 0(
k1 + k12 − ω2m −k12

−k12 k1 + k12 − ω2m

)(
1
±1

)
=

(
k1 + k12 − ω2m∓ k12
−k12 ± k1 ± k12 ∓ ω2m

)
=

=

(
1
±1

)
(k1 + k12 − ω2m∓ k12)

This means that the secular equation applies if

ω2m = k1 + k12 ∓ k12

Hence

ω =

√
k1 + k12 ∓ k12

m

Therefore, we have one low frequency symmetrical mode and one high frequency anti-symmetrical mode.

3.5.2 Carbon Dioxide Molecule

We can model carbon dioxide molecule as three colinear masses with masses m1 = m3 = mO and m2 = mC ,
which are connected by springs of equal stiffness k, with m1 connected to m2 and m3 connected to m2.
Let xC be the coordinate of the mass m2, x3 coordinate of mass m3 relative to m2 and x1 the coordinate
of mass m1 with respect to mass m2, taken in the same direction. The kinetic energy is then

T =
1

2
mO(ẋ1 + ẋC)2 +

1

2
mC ẋ

2
C +

1

2
mO(ẋ3 + ẋC)2

The inertia matrix is

M =

 mO mO 0
mO 2mO +mC mO

0 mO mO


The potential energy is

V =
1

2
kx21 +

1

2
kx23

Hence the stiffness matrix is

K =

 k 0 0
0 0 0
0 0 k


There is a symmetry to the exchange of the oxygen atoms, with permutation matrix P13 as the symmetry
matrix

P13 =

 0 0 1
0 1 0
1 0 0


To find the eigenvalues of P13∣∣∣∣∣∣

−λ 0 1
0 1− λ 0
1 0 −λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣ −λ 1
1 −λ

∣∣∣∣ = −(λ− 1)(λ2 − 1) = 0

(λ− 1)2(λ+ 1) = 0
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which means that we have some degenerate eigenvectors with eigenvalue 1 and non-degenerate eigenvector
with eigenvalue −1. For the non-degenerate eigenvector 1 0 1

0 2 0
1 0 1

 a
b
c

 =

 0
0
0



Which corresponds to eigenvector ~X1 =

 1
0
−1

. This is the common oscillation of the two oxygen atoms

in opposite direction - the anti-symmetric mode (hence eigenvalue -1).
The degenerate eigenvectors need to satisfy −1 0 1

0 0 0
1 0 −1

 a
b
c

 =

 0
0
0



which leads to set of eigenvectors

 1
b
1

, where b can be any constant. This set has orthogonal basis

consisting of two vectors

~X2 =

 0
1
0

 , ~X3 =

 1
0
1


The first vector corresponds to the translational mode, and the second to the oscillations of C and O atoms
in opposite direction.
To check these, start with the non-degenerate eigenvector

(K− ω2
1M) ~X1 = ~0 k − ω2

1mO −ω2
1mO 0

−ω2
1mO −ω2

1(2m0 +mC) −ω2
1mO

0 −ω2
1mO k − ω2

1mO

 1
0
−1

 =

 0
0
0


This clearly only works if ω1 =

√
k
mO

.

For translational motion is k − ω2
2mO −ω2

2mO 0
−ω2

2mO −ω2
2(2m0 +mC) −ω2

2mO

0 −ω2
2mO k − ω2

2mO

 0
1
0

 =

 0
0
0


this clearly requires ω2 = 0, which is expected of the translational mode.
We could try the same for the other vector, but we would find a problem - the requirement would be
for frequency to be the same as ω1. Therefore, the last normal mode is not accesible from the symmetry
arguments. Therefore, we need to solve for determinant of K− ω2M explicitly

|K− ω2M| = 0

(k − ω2mO)

∣∣∣∣ −ω2(2mO +mC) −ω2mO

−ω2mO k − ω2mO

∣∣∣∣+ ω2mO

∣∣∣∣ −ω2mO −ω2mO

0 k − ω2mO

∣∣∣∣ = 0

−(k − ω2mO)(ω2(2mO +mC)(k − ω2mO) + ω4m2
O)− (k − ω2mO)ω4m2

O = 0

We are not interested in solution ω = 0 or k − ω2mO = 0, so we are left with

(2mO +mC)(k − ω2mO) + 2ω2m2
O = 0

(2mO +mC)k − 2m2
Oω

2 −mCmOω
2 + 2ω2m2

O = 0

(2mO +mC)k = mCmOω
2

Hence

ω = ω3 =

√
k

mOmC
2mO+mC

17
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To find the normal mode vector k − (2mO+mC)k
mC

− (2mO+mC)k
mC

0

− (2mO+mC)k
mC

− (2mO+mC)2k
mOmC

− (2mO+mC)k
mC

0 − (2mO+mC)k
mC

k − (2mO+mC)k
mC


 a

b
c

 =

 0
0
0


From the first and third row, we see that a = c. From the second row then

2
(2mO +mC)k

mC
a = − (2mO +mC)2k

mOmC
c

Hence

c = − 2mO

(2mO +mC)
a

And the eigenvector is

~X3 =

 1
− 2mO

(2mO+mC)

1


we therefore see that this normal vector lies in the space of eigenvectors of P13, specifically in the subspace
created by the degenerate eigenvectors.
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