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Introduction

This revision guide for MA131A Analysis I/MA137 Mathematical Analysis has been designed as an aid
to revision, not a substitute for it. Analysis I is a hard course to get your head around; once the ideas
click in you head, however, it does become easier. Hopefully this guide should clarify any points of
confusion you may have, and convince you that there’s not quite as much to the course as the large
pile of workbooks and notes you have amassed might suggest. For further practice and reference, the
questions in R. P. Burn’s Numbers and Functions are invaluable, and indeed one of the principal sources
of this revision guide.

Beware of the proofs provided in this guide: where proofs are included, they are at best sketches of
how such a proof might go – they are intended as a aid to remembering the key steps of the proof, not
something to be memorised parrot-fashion. An excellent technique of preparing for the exam is simply
to read through the revision guide until you come to the first proof, cover it up, and try and prove it
without looking. If you get stuck, then (and only then) you should look at the first step in the proof,
take it as a hint and try and prove the rest; then repeat this procedure until you have worked through
the entire guide.

Disclaimer: Use at your own risk. No guarantee is made that this revision guide is accurate or
complete, or that it will improve your exam performance. Use of this guide will increase entropy,
contributing to the heat death of the universe. Contains no GM ingredients. Your mileage may vary.
All your base are belong to us. We wouldn’t recommend this revision guide as a pie filling.

Authors

Written by D. S. McCormick (d.s.mccormick@warwick.ac.uk).
Based upon the workbooks and lectures for MA131 Analysis I at the University of Warwick. Minor
corrections and clarifications added by Guy Barwell.
Any corrections or improvements should be reported by email to comms@warwickmaths.org.
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1 Numbers and Inequalities

Analysis is the result of two hundred years’ work to put calculus on firm footings, and to extend it
beyond what could possibly have been imagined in the 1820s, when Cauchy and others started the
transformation. First, we recap some key properties of numbers and some key equations and inequalities
which are useful over and over again.

The essential difference between calculus and analysis is proof : in analysis, we start from the bottom
and prove our way up. One key way to prove is that of induction, which you should be familiar with
from MA132 Foundations:

Principle of Mathematical Induction. A proposition P (n) relating to a natural number n is valid
for all natural numbers n if

1. P (1) is true, i.e. the proposition is valid for n = 1; and
2. P (n) =⇒ P (n+ 1), i.e. the proposition for n implies the proposition for n+ 1.

Note that in analysis, the natural numbers do not include zero: i.e. 0 /∈ N. That said, we could start
the induction at 0, 2 or any other number, and it would still work.

Induction is one way of proving the geometric progression formula from A-level. (Try it!) We
reproduce the formula here for reference:

Proposition 1.1 (Geometric Progression). Provided x 6= 1,
∑n
k=0 x

k = 1−xn+1

1−x for all n.

Beware of the proofs in this revision guide: they are very short – please read the disclaimer on the
inside front page.

1.1 Inequalities

Vital in analysis is the use of inequalities - relations involving one of <, ≤, >, ≥. There are two types
of inequalities: those which are true for some values of x, for example x2 > 9 if and only if x > 3 or
x < −3; and those which are always true, such as x2 > −1 is true for all x ∈ R.

To “solve” an inequality, we manipulate it a bit like we would an equation. However, we must be
careful: while adding a number to each side preserves the inequality, and multiplying both sides by a
positive number preserves the inequality, multiplying by a negative number reverses the inequality: that
is, x > 2 implies −x < −2, not −x > −2. So whenever an inequality involves products, quotients, or
modulus signs, we must often consider separate cases; this is called case analysis.

We will give an example of case analysis after we formally define the absolute value function:

Definition 1.2. Define | · | : R→ R by |x| = x if x ≥ 0 and |x| = −x if x < 0.

Proposition 1.3. For any x, y ∈ R,
∣∣|x|∣∣ = |x|, |xy| = |x||y|, and

∣∣∣xy ∣∣∣ = |x|
|y| .

We can use this to express −c < x < c as |x| < c. Similarly, we can express a − c < x < a + c as
|x− a| < c, and we can think of this as “the distance between x and a is less than c”.

Example. To solve |x− 3|+ |7 + x| > 16, note that |x− 3| will change behaviour at 3, and |7 + x| will
change behaviour at −7, so we consider three cases:
• When x < −7, we have (3−x)+(−7−x) > 16 ⇐⇒ −4−2x > 16 ⇐⇒ 2x < −20 ⇐⇒ x < −10,

so it is true for x < −10.
• When −7 < x < 3, the inequality becomes (3− x) + (7 + x) > 16 ⇐⇒ 10 > 16, which is false.
• When x > 3, we get (x− 3) + (7 + x) > 16 ⇐⇒ 2x+ 4 > 16 ⇐⇒ x > 6, so it is true for x > 6.

Thus the inequality holds for x < −10 or x > 6.

Note: we use ⇐⇒ to make sure we get the entire solution set, i.e. we can run the argument backwards
as well as forwards.

One very useful inequality that holds for all numbers x and y is the Triangle Inequality.

Theorem 1.4 (Triangle Inequality). For any x, y ∈ R, |x+ y| ≤ |x|+ |y|. (Proof: square both sides.)

One reason we call this the triangle inequality is because if we substitute x = a− b, y = b− c, then
we get |a− c| ≤ |a− b|+ |b− c|, so the distance from a to c is shorter if you go direct rather than via b.
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Definition 1.5. Suppose we have a list of n positive numbers a1, a2, . . . , an. We define
Arithmetic Mean = a1+a2+...+an

n and
Geometric Mean = n

√
a1a2a3 . . . an

Another useful inequality is Bernoulli’s inequality:

Theorem 1.6 (Bernoulli’s Inequality). When x > −1 and n ∈ N, (1 + x)n ≥ 1 + nx.

Theorem 1.7 (Power Rule). If x, y ∈ R, x, y > 0 then, for each n ∈ N, x < y, ⇐⇒ xn < yn

Proof. By induction we prove that x < y =⇒ xn < yn using the transitivity of inequalities in the
induction step. The converse can be proven by the use of the contrapositive rule (which you should meet
in Foundations) and induction as in the first part.

2 Sequences

In some sense, analysis is the study of the infinite. However, infinity is not always a nice mistress. Our
first way of “taming” the infinite is to consider sequences of numbers. A sequence of (real1) numbers is
just a list of real numbers put in a definite order, that is

(an)∞n=1 = (a1, a2, a3, a4, . . . ).

To put it another way, a sequence assigns to each natural number n a real number an; thus a sequence is
a function a : N→ R where we write an instead of a(n). (Sometimes the sequence starts at a0; it doesn’t
really matter, as long as it’s clear.)

Note that the n is a dummy variable: (an)∞n=1 is the same thing as (aj)
∞
j=1 or (aλ)∞λ=1. When it is

clear what range n should have, we often drop the suffixes and write (an) for (an)∞n=1.
Not all sequences are useful or interesting, so we have various classes of sequences (“things which

sequences can do”) so that we can talk about those which do interest us with ease.

2.1 Monotonicity and Boundedness

Definition 2.1. Let (an)∞n=1 be a sequence. We say that:
1. (an) is increasing if an+1 ≥ an for every n ∈ N;
2. (an) is strictly increasing if an+1 > an for every n ∈ N;
3. (an) is decreasing if an+1 ≤ an for every n ∈ N;
4. (an) is strictly decreasing if an+1 < an for every n ∈ N;
5. (an) is monotonic if it is either increasing or decreasing or both2;
6. (an) is non-monotonic if it is neither increasing nor decreasing.

Note that since an+1 > an certainly implies that an+1 ≥ an, if a sequence is strictly increasing
it is automatically increasing as well. Similarly, if a sequence is strictly decreasing it is automatically
decreasing as well. A sequence cannot be both strictly increasing and strictly decreasing. However, a
sequence can be both increasing and decreasing: this happens if and only if (an) is a constant sequence
– that is, an = c for every n and some constant c – since an+1 = an is equivalent to an+1 ≥ an and
an+1 ≤ an.

The word “monotonic” is simply a catch-all word to indicate that the sequence is always doing the
same thing (it is “monotonous”) – namely that it is increasing or decreasing (or both). Thus constant
sequences are monotonic, increasing sequences are monotonic, decreasing sequences are monotonic. When
the sequence oscillates, that is when it is not monotonic, we simply call it non-monotonic.

Example. 1. The sequence
(
1
n

)∞
n=1

is strictly decreasing, and hence decreasing, and hence monotonic.
2. The sequence (1, 1, 2, 2, 3, 3, . . . ) is increasing (but not strictly increasing), and hence monotonic.
3. The sequence (sinn)∞n=1 is neither increasing nor decreasing; hence it is non-monotonic.

1In this course all the sequences will consist of real numbers; however, in subsequent courses you will consider sequences
of complex numbers, sequences of vectors, even sequences of sequences and sequences of functions. This corresponds simply
to changing the domain of the sequence function a : N → R to be a : N → C etc.

2The mathematical sense of the word “or” is inclusive or, that is either one or other or both.
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Definition 2.2. Let (an)∞n=1 be a sequence. We say that:
1. U is an upper bound for (an) if an ≤ U for every n ∈ N;
2. (an) is bounded above if it has an upper bound;
3. L is a lower bound for (an) if an ≥ L for every n ∈ N;
4. (an) is bounded below if it has a lower bound;
5. (an) is bounded if it is bounded above and below, that is if it has both an upper bound and a lower

bound.

Note that we don’t care if we have the best possible upper bound – if U is an upper bound for a
sequence, then so is any number greater than U . Similarly, if L is a lower bound for a sequence, then so
is any number less than L.

Example. 1. The sequence
(
1
n

)∞
n=1

is bounded, since 0 < 1
n ≤ 1 for every n ∈ N.

2. The sequence (n)∞n=1 is bounded below but not bounded above, since n ≥ 1 for every n ∈ N, but
for any C there is an n such that n > C, so no possible upper bound can work.

2.2 Limits of Sequences

Our main reason for working with sequences is to investigate what can happen to the terms of a sequence
as you send n to ∞: does it oscillate, settle down, shoot off to infinity, or maybe something else? Often
a sequence seems to be “going somewhere”, and we try and encapsulate this in the various notions of a
limit of a sequence.

2.2.1 Tending to Infinity

We first define a sequence tending to infinity3:

Definition 2.3. A sequence (an) tends to infinity4 if, for every C > 0 there exists N ∈ N such that
an > C for all n > N .

There are many shorthands to avoid always writing “(an) tends to infinity”: (an) → ∞ as n → ∞
and lim

n→∞
an =∞ are two that we will use (though we often omit the “as n→∞” out of laziness).

Example. 1. (n2)→∞: given C > 0, let N >
√
C; then n > N =⇒ n >

√
C =⇒ n2 > C.

2. (log n)→∞: given C > 0, let N > eC ; then n > N =⇒ n > eC =⇒ log n > C.

How do you figure out what N should be? Very often, it is easiest to work backwards from what you
want: so in the example of (n2), we can see that (as n > 0)

n2 > C ⇐⇒
√
n2 >

√
C ⇐⇒ n >

√
C,

so we pick some natural number N >
√
C and then n > N gives us n2 > C by working the sequence of

implications backwards (which we can do because they are ⇐⇒ ).
Note carefully the following:

• A sequence which tends to infinity is not bounded above; put another way, any sequence which is
bounded above cannot tend to infinity: just use the upper bound as your C; then the terms will
never exceed it, yet you want them all to exceed it after a certain point. However, not every sequence
which is not bounded above tends to infinity: for example, (−1)nn = (−1, 2,−3, 4,−5, 6, . . . ) is
unbounded but does not tend to infinity. (If you want an example that is still bounded below, try
(1, 0, 2, 0, 3, 0, . . . ).)

• A sequence which tends to infinity need not be increasing either: (2, 1, 4, 3, 6, 5, . . . ) tends to infinity
but is not increasing. In addition, an increasing sequence does not necessarily tend to infinity: the

sequence
(

n
n+1

)
=
(
1
2 ,

2
3 ,

3
4 , . . .

)
is increasing, but does not tend to infinity, because it is bounded

above. However, an increasing sequence that is not bounded above does tend to infinity.

3Note that we do not define “infinity”; we only define “tends to infinity” as one unit.
4We can write this very concisely in symbols: ∀C > 0,, ∃N ∈ N s.t. n > N =⇒ an > C. While this is useful

shorthand, it sometimes obscures the meaning of the words.
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Just as we can have a sequence getting arbitrarily large in the positive direction, we can also have it
getting arbitrarily large in the negative direction, i.e. “tending to minus infinity”:

Definition 2.4. A sequence (an) tends to minus infinity if, for every C < 0 there exists N ∈ N such
that an < C for all n > N .

We write this as (an)→ −∞ (as n→∞) or lim
n→∞

an = −∞.

We now consider the relationship between different sequences which tend to plus or minus infinity.

Lemma 2.5. Let (an), (bn) be sequences with an ≤ bn for all n. Then if (an)→∞, then (bn)→∞.

We can turn this around and say if an ≥ bn and (an)→ −∞ then (bn)→ −∞ as well.

Proposition 2.6. Let (an), (bn) be sequences with (an) → ∞ and (bn) → ∞. Then (an + bn) → ∞
and (anbn)→∞. Furthermore, if λ > 0, then (λan)→∞, and if λ < 0 then (λan)→ −∞.

Proof. Fix C > 0. For (an+ bn), take N1 such that an > C/2 for n > N1 and N2 such that bn > C/2 for
n > N2; then take N = max{N1, N2}, so that an + bn > C for n > N . For (anbn) replace C/2 by

√
C.

For (λan), take N such that an > C/λ for n > N , then λan > C when λ > 0; similar when λ < 0.

2.2.2 Tending to Zero: Null Sequences

We next define what it means for a sequence to “tend to zero”.

Definition 2.7. A sequence (an) tends to zero if, for any ε > 0, there is an N ∈ N such that |an| < ε
for all n > N .

We write this as (an)→ 0 (as n→∞) or lim
n→∞

an = 0. We also call (an) a null sequence.

Example. 1.
(
1
n

)
→ 0: given ε > 0, pick N > 1

ε : then n > N =⇒ 0 < 1
n < ε, so

∣∣ 1
n

∣∣ < ε.

2.
(

1
n2

)
→ 0: given ε > 0, pick N > 1√

ε
: then n > N =⇒ n2 > 1

ε =⇒ 0 < 1
n2 < ε, so

∣∣ 1
n2

∣∣ < ε.

3. The sequence (6) 6→ 0, i.e. it does not tend to zero: take ε = 1, then we want to find N such that
|an| < 1 for all n > N . But this is impossible, since |an| = 6 for all n.

We can now relate sequences tending to zero and sequences tending to infinity in a natural way:

Lemma 2.8. If (an)→∞ then
(

1
an

)
→ 0.

Proof. Given ε > 0, set C = 1
ε ; take an N s.t. an > C for n > N ; then 0 < 1

an
< 1

C = ε when n > N .

Lemma 2.9 (Absolute Value Rule). (an)→ 0 if and only if (|an|)→ 0.

Proof. This follows immediately from the fact that
∣∣|an|∣∣ = |an|.

It should be noted the converse of the previous lemma is false: if
(

1
an

)
→ 0, then (|an|)→∞, but it

is not necessarily the case that (an)→∞; for example, consider an = (−1)nn.

Theorem 2.10 (Sandwich Theorem for null sequences). Let (an) and (bn) be sequences s.t. 0 ≤ |bn| ≤ an
for all n. Then if (an)→ 0, then (bn)→ 0.

Proof. Given ε > 0, take N such that |an| < ε when n > N . As an ≥ 0, an < ε; thus for n > N ,
0 ≤ |bn| ≤ an < ε, so (bn)→ 0.

Example. We have 0 ≤
∣∣∣ (−1)nn2

∣∣∣ ≤ 1
n for all n; as

(
1
n

)
→ 0,

(
(−1)n
n2

)
→ 0.

Proposition 2.11 (Sum and Product Rules for null sequences). Let (an)→ 0 and (bn)→ 0. Then for
any λ ∈ R, (λan)→ 0; (an + bn)→ 0; and (anbn)→ 0.

We can combine the first two parts of these and say that for any λ, µ ∈ R, (λan + µbn)→ 0.

Proof. We first prove (λan) → 0. If λ 6= 0, then given ε > 0, take N such that |an| < ε
|λ| for n > N ;

then |λan| < ε. (If λ = 0 it is trivial.) To prove (an + bn)→ 0, given ε > 0, pick N1 such that |an| < ε
2

for n > N1, and pick N2 such that |bn| < ε
2 for n > N2. Put N = max{N1, N2}; then by the triangle

inequality, |an + bn| ≤ |an|+ |bn| < ε for n > N . The proof of (anbn)→ 0 uses
√
ε instead of ε

2 .

Example. n2+5n+6
n4 = 1

n2 + 5
n3 + 6

n4 is the sum of three null sequences and so it is null.
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2.2.3 Convergent Sequences

We next define what it means for a sequence to converge to a number other than zero.

Definition 2.12. A sequence (an) converges (or tends) to a ∈ R if, for any ε > 0, there is an N ∈ N
such that |an − a| < ε for all n > N .

We write this as (an)→ a (as n→∞) or lim
n→∞

an = a.

We can think of this (and the other forms of convergence) as a game. You choose a sequence you
think converges, and you choose a. Your opponent chooses ε > 0 – possibly extremely small. You try
and find an N such that all the terms beyond that point are within ε of a, i.e. a − ε < an < a + ε. If
you can always find an N , no matter how small an ε you are given, you win; the sequence tends to a. If
there is some ε for which you cannot find an N , you lose; it doesn’t tend to a.

Example. Consider
(
n+1
2n

)
. To show this tends to 1

2 , given ε, we want an N such that
∣∣n+1

2n −
1
2

∣∣ < ε

for n > N . As n+1
2n = 1

2 + 1
2n , we need an N such that

∣∣ 1
2n

∣∣ < ε, whence we see that N = 1
2ε suffices.

Just by looking at the definition it should be clear that:

Lemma 2.13. (an)→ a if and only if (an − a)→ 0.

Is it possible that a sequence (an) could converge to two different numbers? No:

Proposition 2.14. A sequence cannot converge to more than one limit.

Proof. All uniqueness proofs follow the same idea: suppose there are two, and show they must be equal.
So suppose (an) → a and (an) → b, with a < b, and let ε = b−a

2 . Then pick N1 s.t. |an − a| < b−a
2 for

n > N1, and hence that an <
a+b
2 . Then pick n > N2 s.t. |an − b| < b−a

2 for n > N2, and hence that

an >
a+b
2 . Then when n > max{N1, N2}, an < a+b

2 and an >
a+b
2 , which is impossible. Thus a = b.

Proposition 2.15. A convergent sequence is bounded.

Proof. Let (an)→ a. Then taking ε = 1, a− 1 < an < a+ 1 for n > N , so U = max{a1, . . . , aN , a+ 1}
and L = min{a1, . . . , aN , a− 1} are upper and lower bounds respectively5.

Theorem 2.16 (Sum, Product and Quotient Rules). Let (an)→ a and (bn)→ b. Then for any λ, µ ∈ R,

(λan + µbn)→ λa+ µb; (anbn)→ ab; and if b 6= 0 then
(
an
bn

)
→ a

b .

Proof. Since these results are quite long to prove in full, we instead give the key steps. In each case we
apply one or more intermediary steps to form a null sequence, then apply the appropriate rules.
Sum rule: simply note that (λan + µbn − (λa+ µb)) is a null sequence, and apply the sum rule for null
sequences.
Product Rule: First show that anbn − ab = (an − a)(bn − b) + a(bn − b) + b(an − a) (multiply out first
term on rhs) then apply sum and product rules for null sequences to show lhs is null.

Quotient rule: First we note that (bbn) → b2, and so bbn > b2

2 for n > N0. So, we can show that

eventually, 0 ≤
∣∣∣ 1
bn
− 1

b

∣∣∣ ≤ 2
b2 |b− bn|. Since b − bn is null, by sandwich rule we have that 1

bn
→ 1

b .

Finally, we write an
bn

= an
1
bn

and apply product rule for sequences.

Theorem 2.17 (Sandwich Rule). Let (an), (bn), (cn) be such that an ≤ cn ≤ bn for every n. If (an)→ l
and (bn)→ l, then (cn)→ l.

This is also known as the squeeze rule, for obvious reasons.

Proof. Simply note that an ≤ cn ≤ bn if and only if 0 ≤ cn−an ≤ bn−an, and (bn−an)→ 0, and apply
the sandwich rule for null sequences.

5The crucial point here is that the sets we are taking the maximum and minimum over are finite.
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2.3 Useful Results on Sequences

Having defined various notions of convergence, we can extend them to more sequences in various ways.

Definition 2.18. A sequence (an) satisfies a property eventually if there exists N ∈ N such that (an+N )
satisfies the property.

This may seem like a hindrance; we only show that part of the sequence satisfies a property, and we
want it all to have it. Sometimes, we get this for free:

Lemma 2.19. If a sequence (an) is eventually bounded, i.e. (an+N ) is bounded for some N , then (an)
is bounded.

Proof. This is similar to showing a convergent sequence is bounded. We know that {an+1, an+2, . . . } is
bounded, i.e. L ≤ an+N ≤ U for all n. Thus U ′ = max{a1, . . . , aN , U} and L′ = min{a1, . . . , aN , L} are
upper and lower bounds for (an).

In fact, the same is true of convergence:

Proposition 2.20 (Shift Rule). For any n ∈ N, (an)→ a if and only if (an+N )→ a.

Proof. Given ε > 0, take N1 such that |an − a| < ε for n > N1; then for n > N1 −N , |an+N − a| < ε;
thus (an)→ a implies (an+N )→ a. The converse is almost identical.

Corollary 2.21 (Sandwich Rule with Shift Rule). Let (an), (bn), (cn) be such that an ≤ cn ≤ bn
eventually. If (an)→ l and (bn)→ l, then (cn)→ l.

Often, we are not concerned with exactly what the limit of a sequence is, but rather that it must lie
between, say, 0 and 1. If we know that the terms of a convergent sequence are between 0 and 1, must
its limit lie between 0 and 1?

Lemma 2.22. Let (an)→ a. If an ≥ 0 for all n, then a ≥ 0.

Proof. Suppose a < 0; then for ε = −a, when n > N , |an − a| < ε, i.e. 2a < an < 0 – contradiction.

Corollary 2.23 (Inequality Rule). Let (an)→ a and (bn)→ b, with an ≤ bn for all n. Then a ≤ b.

Corollary 2.24 (Closed Interval Rule). Let (an)→ a. If L ≤ an ≤ U for every n, then L ≤ a ≤ U .

2.3.1 Subsequences

A subsequence of a sequence is formed by picking out some (or all) terms of a sequence to form a new
sequence: for instance we might take (a1, a4, a9, a16, . . . ). In general, the index is a strictly increasing
sequence of natural numbers:

Definition 2.25. A subsequence of (an)∞n=1 is a sequence (ani
)∞i=1, where (ni)

∞
i=1 is a strictly increasing

sequence of natural numbers.

It is immediate that:

Lemma 2.26. If (an)→ a, then every subsequence (ani)→ a as well.

Note that the shifted sequence (an+N ) is simply a special kind of subsequence, so this is a generali-
sation of the shift rule. Furthermore, if a sequence is bounded, then so is every subsequence:

Lemma 2.27. If (an) is bounded, then every subsequence (ani) is bounded as well.

It is a useful fact that every sequence contains a subsequence which is monotonic:

Proposition 2.28. Every sequence has a monotonic subsequence.

Proof. We say that af is a floor term for (an) if an ≥ af for all n ≥ f . If there are infinitely many floor
terms, then the subsequence of floor terms is an increasing sequence. If there are finitely many floor
terms, then beyond the last floor term we can always construct a decreasing sequence.
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2.3.2 Powers and the Ratio Lemma

We now demonstrate a standard result on limits which comes in very useful all over analysis.

Proposition 2.29. Consider (xn). If x > 1, (xn) → ∞; if x = 1, (xn) → 1; if −1 < x < 1, (xn) → 0;
and if x ≤ −1, (xn) does not converge.

Very often, a sequence is not exactly xn but it grows or shrinks at least as fast, so we can sandwich
them by a geometric sequence xn. We can formalise this by considering the ratio of two terms, an+1

an
.

Lemma 2.30 (Ratio Lemma). Let (an) be a sequence with an > 0 for all n. Suppose 0 < l < 1 and
an+1

an
≤ l for all n. Then (an)→ 0.

Proof. By induction, we can show that 0 ≤ an+1 ≤ lna1. Then as 0 < l < 1, we have lna1 → 0 as
n→∞, so by the sandwich rule (an)→ 0.

The same result is true if an+1

an
≤ l eventually, using the shift rule. In fact, if the sequence

(
an+1

an

)
converges, we get a more useful form of the same thing:

Corollary 2.31 (Ratio Lemma, limit form). Let (an) be a sequence with an > 0 for all n. If
(
an+1

an

)
→ l

with 0 ≤ l < 1 then (an)→ 0; while if
(
an+1

an

)
→ l with l > 1 then (an)→∞.

Note that we cannot conclude anything if
(
an+1

an

)
→ 1; for instance (n)∞n=1 → ∞,

(
1
n

)∞
n=1
→ 0, and

(k)∞n=1 for any constant k > 0 all have their ratios tending to 1.

Proof. If
(
an+1

an

)
→ l, 0 ≤ l < 1, then for ε = 1−l

2 , an+1

an
≤ l+1

2 < 1 for n > N , so (an)→ 0. If
(
an+1

an

)
→ l

and l > 1, then
(

an
an+1

)
→ 1

l , so
(

1
an

)
→ 0 by the first case; hence (an)→∞ (as an > 0).

2.3.3 Standard Results

We present, without proof, some standard limits which crop up all over analysis. You may be asked to
prove any one of these, but it is more likely you will need to apply them in finding the limit of a more
complicated sequence, so remembering the result is much more important.

Proposition 2.32. (i) If x > 0 then (x1/n)→ 1. (ii) (n1/n)→ 1.

The following proposition tells us that while (xn), (nk), (nn) and (n!) all tend to infinity, they don’t
all do it at the same speed:

Proposition 2.33. (i)
(
xn

n!

)
→ 0 for all values of x.

(ii)
(
n!
nn

)
→ 0 as n→∞.

(iii)
(
xn

nk

)
→ 0 if x ≤ 1, while

(
xn

nk

)
→∞ if x > 1.

The following bounds on n! come in useful sometimes:

Proposition 2.34. nne−n+1 ≤ n! ≤ nn+1e−n+1.

Example. Consider
(
n!2n

nn

)
. Now, nne−n+1 ≤ n! ≤ nn+1e−n+1 =⇒ 2ne−n+1 ≤ n!2n

nn ≤ n2ne−n+1

=⇒ e
(
2n

en

)
≤ n!2n

nn ≤ e
(
n2n

en

)
. By the ratio lemma,

(
2n

en

)
→ 0 and

(
n2n

en

)
→ 0, so

(
n!2n

nn

)
→ 0.

3 Completeness

Completeness is the key property of the real numbers which the rational numbers lack: essentially, the
real number line has no “holes”. The holes which are present in the rational numbers are the irrational
numbers such as

√
2, π, e and so on. However, the rationals and irrationals are both “dense”, in the

sense that between any two real numbers there are always infinitely many rational numbers and infinitely
many irrational numbers.
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3.1 Rational Numbers

Example. 1
2 ,−

5
6 , 0 are all rational numbers.

Definition 3.1. A real number is rational if it can be written in the form p
q , where p and q are integers

with q 6= 0. The set of rational numbers is denoted by Q. A real number that is not rational is termed
irrational.

Theorem 3.2.
√

2 is irrational.

Proof. Suppose
√

2 is rational then it can be written in form m
n where m and n are integers which are

coprime (only 1 can divide both m and n) so m2

n2 = 2 =⇒ m2 = 2n2 so m2 is even but that means that
m is even so we can write m as m = 2p where p is an integer. So m2 = 4p2 = 2n2, 2p2 = n2 so n2 is also
even and so n is even but that contradicts the claim made above as both m and n are divisible by 2, so√

2 cannot be rational.

Theorem 3.3. Between any two distinct real numbers there is a rational number.

Proof. In order to prove this statement it will be useful to define the integer part of x notation, that is
if x is a real number then [x] is the integer part of that number (e.g. [π] = 3)

Let a, b ∈ R such that a < b,by the definition above we know that [x] ≥ x < [x] + 1 by setting

x = 2na we get [2na]
2n ≥ a ≥ [2na]

2n + 1
2n , we know that 1

2n → 0 so ∃N ∈ N such that | 12n | < b − a for

n > N , but then a < [2na]
2n + 1

2n < b.

Corollary 3.4. Let a < b. There is an infinite number of rational numbers in the open interval (a,b).

Theorem 3.5. Between any two distinct real numbers there is an irrational number.

Proof. Let p, q, x, y ∈ Z and y, q 6= 0 and p
q <

x
y we know that

√
2
n → 0 so ∃N ∈ N such that |

√
2
n | <

x
y −

p
q

for n > N , so p
q <

p
q +

√
2
n < x

y so there is an irrational between two rational numbers.

Corollary 3.6. Let a < b. There is an infinite number of irrational numbers in the open interval (a, b).

So what is it that makes the real numbers different?

3.2 Least Upper Bounds and Greatest Lower Bounds

Much as we defined bounds for sequences, we can define bounds for sets of real numbers as follows:

Definition 3.7. Let A ⊂ R be non-empty. We say that:
1. U is an upper bound for A if, for every a ∈ A, a ≤ U ;
2. A is bounded above if it has an upper bound;
3. L is a lower bound for A if, for every a ∈ A, a ≥ L;
4. A is bounded below if it has a lower bound.

Again, the bounds do not have to be the best possible – if U is an upper bound, then so is any
number greater than U . We rectify this by defining a least upper bound and a greatest lower bound :

Definition 3.8. Let A ⊂ R be non-empty. We say that U is a least upper bound for A if it is an upper
bound, and for any other upper bound U ′ we have U ≤ U ′. Similarly, we say that L is a greatest lower
bound for A if it is a lower bound, and for any other lower bound L′ we have L ≥ L′.

The least upper bound of A is called the supremum of A and is denoted by supA. The greatest lower
bound of A is called the infimum of A and is denoted by inf A.

Lemma 3.9. A non-empty set A ⊂ R can have at most one least upper bound and at most one greatest
lower bound.

Proof. Let U1, U2 be least upper bounds for A. As U1 is a least upper bound, U1 ≤ U for all upper
bounds U ; thus U1 ≤ U2. Similarly, U2 ≤ U1. Hence U1 = U2.
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Completeness Axiom. Every non-empty subset of R that is bounded above has a least upper bound.

If you only used rational numbers, this would be false: the set {x ∈ Q : x < π} has rational upper
bounds 4, 3.2, 3.15, 3.142, 3.1416, . . . , but no rational least upper bound. Considered as a subset of the
reals, its least upper bound is π. So the Completeness Axiom captures the idea that the reals have no
“holes”.

The following property of the supremum is used frequently throughout analysis.

Lemma 3.10. Suppose a set A is non-empty and bounded above. Given ε > 0, there is an a ∈ A such
that supA− ε < a ≤ supA.

Proof. If not, then supA− ε would be an upper bound less than supA, which is a contradiction.

Proposition 3.11. Suppose A is a non-empty set of real numbers which is bounded below. Then
−A = {−x : x ∈ A} is bounded above and inf A = − sup(−A).

This leads immediately to another version of the completeness axiom:

Theorem 3.12. Every non-empty subset of R that is bounded below has a greatest lower bound.

3.3 Completeness and Sequences

The mathematician Weierstrass was the first to pin down the ideas of completeness in the 1860s and to
point out that all the deeper results of analysis are based upon completeness. The most immediately
useful consequence is the following theorem:

Theorem 3.13. Every bounded increasing sequence is convergent.

Proof. Let (an) be increasing and bounded; then A = {an : n ∈ N} has a least upper bound, supA.
Thus there exists aN such that supA − ε < aN ≤ supA; as (an) is increasing, supA − ε < an ≤ supA
for all n > N as well. Hence (an)→ supA.

Theorem 3.14. Every bounded decreasing sequence is convergent.

This gives us a very simple test for convergence: if we can show a sequence is monotonic and bounded,
then it must converge. This is particularly useful in the following example:

Example (Recursive sequences). Define a1 = 4 and an+1 =
√
an + 6. First, 3 ≤ a1 ≤ 4, and 3 ≤ an ≤

4 =⇒ 3 ≤ an+1 =
√
an + 6 ≤

√
10 ≤ 4, so by induction an ∈ [3, 4] for all n, i.e. (an) is bounded.

Second, note that a2n − an − 6 = (an + 2)(an − 3) ≥ 0 for all n, since 3 ≤ an ≤ 4, and so we have
an ≥

√
an + 6 = an+1, i.e. (an) is decreasing. So by completeness, it converges; say (an) → a. Hence

an+1 =
√
an + 6 →

√
a+ 6, so a =

√
a+ 6. This gives a2 − a − 6 = 0, with solutions a = −2, 3. Since

an ≥ 3 for all n, (an)→ 3.

The sequence (sinn) is far from convergent, though it is bounded: −1 ≤ sinn ≤ 1. However, the
following consequence of completeness guarantees that it does have a convergent subsequence:

Theorem 3.15 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Every bounded sequence has a monotonic subsequence, which is thus bounded; by complete-
ness, every bounded monotonic sequence converges, hence every bounded sequence has a convergent
subsequence.

3.3.1 Cauchy Sequences

We have seen that any bounded monotonic sequence converges; thus we have the following simple test:

Convergence Test. A monotonic sequence converges if and only if it is bounded.
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The big advantage of this is that it works without knowing exactly what the limit is. Is there a similar
test for non-monotonic sequences? Intuitively, we might hope that if (an+1 − an) → 0, this would be
enough to guarantee (an) converges. But

√
n+ 1 −

√
n = 1√

n+1+
√
n
→ 0 while (

√
n) → ∞, so this is

not true. What we need is not just that neighbouring terms get close, but that all the terms beyond a
certain point are close:

Definition 3.16. A sequence is Cauchy if, for all ε > 0, there is a number N ∈ N such that |an−am| < ε
for n,m > N .

In words, the Cauchy property means that for any positive ε, no matter how small, we can find a
point in the sequence beyond which any two of the terms are at most ε apart. So the terms are getting
more and more “clustered” or “crowded”.

Proposition 3.17. Every convergent sequence is Cauchy.

Proof. Let (an) → a: then given ε > 0, there is N such that |an − a| < ε
2 for n > N . So for n,m > N ,

we have |an − am| ≤ |an − a|+ |a− am| < ε.

This result does not depend on completeness; this is true over the rationals as well. But the following
result, which is the really useful part, is a consequence of completeness:

Theorem 3.18. Every Cauchy sequence converges.

Proof. Fix ε = 1 and fix m > N , then |an − am| < 1 for all n > m, so a Cauchy sequence is bounded.
Thus by completeness it has a convergent subsequence, (ani) → a say. Now, by the triangle inequality,
|an − a| ≤ |an − ani |+ |ani − a|. The Cauchy property means that |an − ani | < ε

2 for n, ni ≥ N1, and as
(ani

)→ a, |ani
− a| < ε

2 for ni ≥ N2; thus for n, ni > max{N1, N2}, |an − a| < ε.

So we arrive at our convergence test:

Convergence Test. A sequence is convergent if and only if is Cauchy.

4 Series

4.1 Defining Infinite Sums

Series are a very useful construction: they are, in essence, infinite sums - expressions such as
∑∞
k=1 ak.

In order to define what we mean by this, we first remind readers of the notation

n∑
k=m

ak = am + am+1 + · · ·+ an

where m ≤ n are integers and the ai are real numbers. It would be a waste to define series with no
mention of all our careful work on sequences, so we make use of this and define the sequence of partial
sums:

Definition 4.1. Let (ak) be a sequence, and consider the series
∑∞
k=1 ak with partial sums (sn), where

sn :=
∑n
k=1 ak. If (sn) → s, we say the series converges to s. If (sn) → ±∞, we say that the series

diverges to ±∞. If (sn) does not converge, we say that the series diverges.

For brevity, we sometimes write
∑
an for

∑∞
n=1 an. Note that there are two sequences associated

with a series
∑∞
k=1 ak; the sequence of its terms, (ak), and the sequence of its partial sums, (sn). Don’t

get them mixed up!

Example. Consider the series
∑∞
n=1

1
3n = 1

3 + 1
9 + · · · . By the geometric progression formula, the

sequence of partial sums is

sn =

n∑
k=1

1

3k
=

1

3
+ · · ·+ 1

3n
=

1

3
·

1−
(
1
3

)n+1

1− 1
3

=
1

2

(
1−

(
1

3

)n+1
)
.

As n→∞,
(
1
3

)n+1 → 0, so (sn)→ 1
2 . Hence

∑∞
n=1

1
3n = 1

2 .
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In fact, this example is just one particular case of the general result for geometric series:

Proposition 4.2 (Geometric Series). The series
∑∞
n=0 x

n converges if |x| < 1, with sum 1
1−x , and

diverges if |x| ≥ 1.

Proof. By the geometric progression formula, the sequence of partial sums is

sn =

n∑
k=0

xk = 1 + x+ · · ·+ xn =
1− xn+1

1− x
.

Now, if |x| < 1, then xn+1 → 0 as n → ∞, so
∑∞
n=0 x

n = limn→∞ sn = 1
1−x . If |x| > 1, then clearly

xn+1 does not converge, so the series
∑∞
n=0 x

n diverges. (Check x = ±1 carefully.)

The series
∑∞
n=1

1
n = 1 + 1

2 + 1
3 + . . . is called the harmonic series:

Proposition 4.3 (Harmonic Series). The series
∑∞
n=1

1
n diverges to infinity.

Proof. Put sn =
∑n
k=1

1
k ; then show s2n ≥ 1 + n

2 by induction; then as sn is increasing, (sn)→∞.

4.1.1 Properties of Convergent Series

Just as with convergent sequences, there are various properties of convergent series which are rather
useful.

Proposition 4.4 (Sum Rule for series). If
∑∞
n=1 an and

∑∞
n=1 bn are convergent, then for any λ, µ ∈ R,∑∞

n=1(λan + µbn) is convergent, and
∑∞
n=1(λan + µbn) = λ

∑∞
n=1 an + µ

∑∞
n=1 bn.

Proof. Apply the sum rule for sequences to the sequences of partial sums.

Proposition 4.5 (Shift Rule for series). For any N ∈ N,
∑∞
n=1 an converges if and only if

∑∞
n=1 an+N

converges.

Proof. Set sn =
∑n
k=1 ak, tn =

∑n
k=1 ak+N . Then sn+N = a1 + · · ·+aN + tn, so as a1 + · · ·+aN is finite,

(tn) converges iff (sn+N ) converges, thus (shift rule for sequences) (tn) converges iff (sn) converges.

4.2 Testing for Convergence

Just as with sequences, we often don’t care exactly what the limit of a series is, but only that it converges.
There are a number of useful tests by which we can easily determine if a series converges.

Theorem 4.6 (Null Sequence Test). If
∑∞
n=1 an converges, then (an)→ 0.

Proof. If sn =
∑n
k=1 ak, then an+1 = sn+1 − sn; so if (sn)→ s, then (an)→ s− s = 0.

This is typically useful only to prove divergence: if (an) 6→ 0, then
∑∞
n=1 an does not converge.

For example, since (
√
n)∞n=1 is not null,

∑∞
n=1

√
n is divergent. The converse does not hold, however:(

1
n

)
→ 0 but

∑∞
n=1

1
n diverges to infinity.

4.2.1 Series with Positive Terms

There are a number of very useful results which depend on the series having only positive terms.

Proposition 4.7 (Boundedness Condition). Let an ≥ 0 for all n. Then
∑∞
n=1 an converges if and only

if its sequence of partial sums (
∑n
k=1 ak)

∞
n=1

is bounded.

Proof. If sn =
∑n
k=1 ak is convergent, then (sn) is bounded. Conversely, if (sn) is bounded, then since

an ≥ 0, (sn) is increasing and hence convergent (by completeness).

Theorem 4.8 (Comparison Test). Suppose 0 ≤ an ≤ bn for every n. If
∑
bn converges then

∑
an

converges and
∑∞
n=1 an ≤

∑∞
n=1 bn.
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Proof. Let sn =
∑n
k=1 ak, tn =

∑n
k=1 bk. As 0 ≤ an ≤ bn, we have 0 ≤ sn ≤ tn. If

∑
bn converges, then

by the boundedness condition (tn) is bounded, and so (sn) is bounded and hence
∑
an converges.

Example (
∑∞
n=1

1
n2 converges). For every n, we have 0 ≤ 1

(n+1)2 ≤
1

n(n+1) . By partial fractions,
1

n(n+1) = 1
n −

1
n+1 , hence

∑n
k=1

1
k(k+1) = 1 − 1

n+1 → 1 as n → ∞. Hence as
∑∞
n=1

1
n(n+1) converges,∑∞

n=1
1
n2 converges6.

By taking the contrapositive of the standard Comparison Test, we get the following additional test:

Corollary 4.9 (Comparison Test extension). Suppose 0 ≤ an ≤ bn. If
∑
an diverges then

∑
bn diverges.

Example. Note that 0 ≤ 1
n ≤

1√
n

. As
∑

1
n diverges,

∑
1√
n

diverges as well.

For sequences, by sandwiching by a geometric sequence, we got a very useful Ratio Lemma. We can
do the same for series by comparing with a geometric series, to get the Ratio Test:

Theorem 4.10 (Ratio Test). Suppose an > 0 for all n, and
(
an+1

an

)
→ l. Then

∑
an converges if

0 ≤ l < 1 and diverges if l > 1.

Note that, again, the case l = 1 is omitted: both
(
1
n

)
and

(
1
n2

)
have their ratios tending to 1, but∑

1
n diverges and

∑
1
n2 converges.

Example. Consider
∑

2n

n! . The ratio is

an+1

an
=

2n+1

(n+ 1)!
· n!

2n
=

2

n+ 1
→ 0.

Hence by the ratio test
∑

2n

n! converges.

Example. Consider

∞∑
n=1

n!(2n)!

(3n)!
=

1!2!

3!
+

2!4!

6!
+

3!6!

9!
+ · · · . The ratio is

an+1

an
=

(n+ 1)!(2(n+ 1))!

(3(n+ 1))!
· (3n)!

n!(2n)!
=

(n+ 1)(2n+ 1)(2n+ 2)

(3n+ 1)(3n+ 2)(3n+ 3)
=

4n3 + 10n2 + 8n+ 2

27n3 + 54n2 + 33n+ 6
→ 4

27
.

Since 4
27 < 1,

∑∞
n=1

n!(2n)!
(3n)! converges by the ratio test.

4.2.2 Integral Test

By using integrals to bound sums, we can see that∫ n+1

m+1

f(x) dx ≤
n∑

k=m+1

f(k) ≤
∫ n

m

f(x) dx.

This leads us to the Integral Test for convergence, which is also very useful:

Theorem 4.11 (Integral Test for convergence). Suppose the function f(x) is non-negative and decreasing
for x ≥ 1. Then

∑∞
n=1 f(n) converges if the increasing sequence

(∫ n
1
f(x) dx

)
is bounded.

Example. Consider
∑∞
n=2

1
n(logn)2 . Observe that d

dx

(
1

log x

)
= − 1

x(log x)2 , so

∫ n

2

1

x(log x)2
dx = − 1

log x

∣∣∣∣n
2

=
1

log 2
− 1

log n
.

As n→∞, log n→∞, so 1
logn → 0, hence

(∫ n
2

1
x(log x)2

)
→ 1

log 2 , and
∑∞
n=2

1
n(logn)2 is convergent.

6In fact,
∑∞
n=1

1
n2 = π2

6
: this fact is proved in MA250 Introduction to PDEs using Fourier series.
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Similarly, we can use integrals to test for divergence:

Theorem 4.12 (Integral Test for divergence). Suppose the function f(x) is non-negative and decreasing
for x ≥ 1. Then

∑∞
n=1 f(n) diverges if the increasing sequence

(∫ n
1
f(x) dx

)
is unbounded.

Example. Consider
∑∞
n=2

1
n logn . Observe that∫ n

2

1

x log x
dx =

∫ n

2

1
x

log x
dx = log(log x)

∣∣∣n
2

= log log n− log log 2.

Now as n→∞, log
(

logn
log 2

)
→∞, so

∑∞
n=2

1
n logn diverges.

4.2.3 What is e?

We now define the base of the natural logarithm e.

Definition 4.13. e =
∑∞
n=0

1
n! .

A simple application of the Ratio Test shows that this series converges. We can use some trickery7

with the Binomial Theorem to show the following two very useful limits:

Theorem 4.14. limn→∞
(
1 + 1

n

)n
= e, and limn→∞

(
1− 1

n

)n
= 1

e .

Example. We apply these limits to show that
∑

n!
nn converges, using the ratio test:

an+1

an
=

(n+ 1)!

(n+ 1)n+1
· n

n

n!
=

(
n

n+ 1

)n
=

1(
1 + 1

n

)n → 1

e
< 1.

4.2.4 Error Bounds

If we have established that a series
∑
an converges then the next question is to calculate the total sum∑∞

n=1 an. Usually there is no hope of getting an explicit formula for the sum and we must be content
with an approximate answer – for example, correct to 10 decimal places.

Example. Take
∑∞
n=1

1
n2 = π2

6 . Can we estimate the size of the error
∣∣∣∑N

n=1
1
n2 − π2

6

∣∣∣? If we can, we

will know how many terms we need to add up to get a good estimate of π
2

6 . Using the integral estimates,
we have ∫ ∞

N+1

1

x2
dx ≤

∞∑
n=N+1

1

n2
≤
∫ ∞
N

1

x2
dx.

Hence 1
1+N ≤

∑∞
n=N+1

1
n2 ≤ 1

N . For the error to be less than 10−10 we need N ≥ 1010, which is a huge

number of terms, and thus this formula is not much use for calculating π2

6 .

4.3 Series with Positive and Negative Terms

Up to now, all our tests for convergence (except for the Null Sequence Test) have required the terms of
our sequence to be positive. For general series, this is not always true.

One very special kind of series is an alternating series, i.e. one of the form
∑

(−1)n+1an. The following
test tells us we are guaranteed that it converges, as long as (an) is decreasing and tends to zero:

Theorem 4.15 (Alternating Series Test). Suppose (an) is decreasing and null. Then the alternating
series

∑
(−1)n+1an is convergent.

Example. Since
(
1
n

)
is decreasing and null, the Alternating Series test tells us that

∑ (−1)n+1

n =

1− 1
2 + 1

3−
1
4 + 1

5−· · · is convergent. With some delicate work, we can in fact show that
∑ (−1)n+1

n = log 2.

7Some similar trickery can in fact be used to show that e is irrational.
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We could try and exploit the Cauchy property for series, but this becomes much more useful if we
first define absolute convergence:

Definition 4.16. The series
∑
an is absolutely convergent if

∑
|an| is convergent.

Example. 1.
∑

1
n2 is absolutely convergent.

2.
∑ (−1)n

n2 is absolutely convergent, since
∣∣∣ (−1)nn2

∣∣∣ = 1
n2 and

∑
1
n2 is convergent.

3.
∑ (−1)n

n is not absolutely convergent, since
∣∣∣ (−1)nn

∣∣∣ = 1
n and

∑
1
n is divergent.

Theorem 4.17. If
∑
an converges absolutely, it is convergent.

Proof. Let sn =
∑n
k=1 ak and tn =

∑n
k=1 |ak|; we show that (sn) is Cauchy. As (tn) is convergent and

hence Cauchy, fix ε > 0 and take N such that |tn − tm| < ε whenever n > m > N . Then by the triangle
inequality,

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak| = |tn − tm| < ε.

This breathes new life into all our tests for series with positive terms; we can now use them to test
for absolute convergence. The Ratio Test can be modified to cope directly with series of mixed terms:

Theorem 4.18 (Ratio Test). Suppose an 6= 0 and
∣∣∣an+1

an

∣∣∣ → l. Then
∑
an converges absolutely (and

hence converges) if 0 ≤ l < 1 and diverges if l > 1.

Theorem 4.19 (Ratio Test Extension). Suppose an 6= 0 and
∣∣∣an+1

an

∣∣∣→∞, then
∑
an diverges.

Example. Consider
∑

xn

n2 . When x = 0, every term is zero so the series converges. When x 6= 0, we
can use the new Ratio Test:∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ xn+1

(n+ 1)2
· n

2

xn

∣∣∣∣ =

(
n

n+ 1

)2

|x| → |x|.

Thus if |x| < 1, the series converges and if |x| > 1 the series diverges. When |x| = 1, |an| = 1
n2 , so

∑
|an|

converges, and hence the series converges for −1 ≤ x ≤ 1.

4.3.1 Rearrangements of Series

If you take a finite set of numbers and rearrange their order, their sum remains the same. But one truly
unsettling fact about infinite sums is that, in some cases, you can rearrange the terms to get a totally
different sum.

Example. We know that log 2 = 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + · · · . Let us rearrange it as 1− 1

2 −
1
4 + 1

3 −
1
6 −

1
8 + 1

5 −
1
10 −

1
12 + · · · . Then we have 1− 1

2 = 1
2 , 1

3 −
1
6 = 1

6 , and so on, so(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · · = 1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

which is clearly half our original series, so converges to log 2
2 .

Definition 4.20. We say that the sequence (bn) is a rearrangement of (an) if there exists a bijection
σ : N→ N (i.e. a permutation on N) such that bn = aσ(n) for all n.

For series with all positive terms it does not matter in what order you add the terms; nor does it
matter what order you add the terms of an absolutely convergent series.

Lemma 4.21. Suppose
∑
an is convergent with an ≥ 0 for all n. If (bn) is a rearrangement of (an),

then
∑
bn is convergent and

∑
bn =

∑
an.

Theorem 4.22. Suppose
∑
an is absolutely convergent. If (bn) is a rearrangement of (an), then

∑
bn

is convergent and
∑
bn =

∑
an.
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Those series which converge, but do not converge absolutely, are thus the only series which we can
conceivably rearrange and get a different sum. We call this conditional convergence:

Definition 4.23. The series
∑
an is conditionally convergent if

∑
an is convergent but

∑
|an| is not.

Example.
∑ (−1)n+1

n is conditionally convergent since it converges but
∑∣∣∣ (−1)n+1

n

∣∣∣ =
∑

1
n is divergent.

In fact, it turns out that any conditionally convergent series can be rearranged to give any sum we
want! The key to this is the following observation:

Proposition 4.24. Let
∑
an be conditionally convergent. Then the series formed from just the positive

terms of an diverges, and the series formed from just the negative terms of an diverges.

Given a conditionally convergent series, we can choose any real number we like, say x. We add up
enough of the positive terms to get us above x, add enough negative terms until we end up less than x
again, and keep repeating; we use up all the terms eventually and so we find a rearrangement that goes
to x. This is encapsulated in the following result:

Theorem 4.25 (Riemann’s Rearrangement Theorem). Suppose
∑
an is conditionally convergent. Then

for every real number x there is a rearrangement (bn) of (an) such that
∑
bn = x.

Closing Remarks

That’s all there is to it – it’s really not as bad as it looks at first sight. The most important thing
about analysis is make sure you know your definitions! If you don’t know what the definitions of
convergent/Cauchy/bounded/monotonic sequences are (etc.), firstly you’re throwing away easy marks
in the exam, and secondly you’re hampering yourself when it comes to proving things since you won’t
be able to work with a definition you can’t remember.

While there will undoubtedly be some proofs on the exam – which is why we have included a selection
in this guide – the main focus is on knowing and applying key results. It is thus much more important
that you can accurately state something like the ratio test and that you can apply it to test convergence,
rather than being able to prove it.

Finally, we hope this revision guide has been useful. But it’s no use just reading it – practise, practise,
PRACTISE! The best source is past exam papers, which can be bought from the Maths General Office,
or are available to download from:

http://www2.warwick.ac.uk/services/exampapers?q=MA131&department=MA&year=Any

and the solutions at

http://www2.warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/archives/

And with that, good luck on the exam!
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