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1 IMPORTANT IDEAS AND PROPERTIES

1 Important Ideas and Properties

We may describe a wave mathematically as a function of position and time, say u(x, t). In general,
the shape of the waveform does not vary with time. Consider a one-dimensional sinusoidal wave,
with the hopefully familiar forms

u(x, t) = A cos(kx− ωt)

= A cos

(
2π

λ
(x− vt)

)
= A cos

(
2π
(x
λ
− νt

))
= A cos

(
2π

(
x

λ
− t

T

))
.

What do we know about this wave? It is right-travelling (+ωt for left-travelling waves) and:

• A is its amplitude;

• k is the wavenumber ;

• ω is the angular frequency ;

• λ = 2π/k is the wavelength;

• ν = ω/2π = 1/T , where ν is the frequency and T the period of the wave;

• v = ω/k is the ‘wave speed’ or phase velocity (the speed of the ‘carrier wave’);

• vg =
dω

dk
is the group velocity ;

• the speed of vertical displacement of the point on the waveform with coordinate x (the

transverse velocity at x) is given, as a function of time, by

(
∂u

∂t

)
x

.

Now consider the waveform u(x, t) = A cos(kx − ωt + ϕ). This wave has the same shape as
our first wave, only with a phase difference of ϕ (imagine it is spatially ‘shifted’ by a constant
amount ϕ with respect to the first wave); ϕ is variously called the initial phase, or the phase at
x = 0, t = 0.

What if these two waves ‘meet’ in space?
The Principle of Superposition. The total displacement when two waves superpose is the sum
of their individual displacements.
This means that we may ‘add waves’. Consider again the sinusoidal waves

u1(x, t) = A cos(kx− ωt) and u2(x, t) = A cos(kx− ωt+ ϕ).

Using the trigonometric identity

cosα+ cosβ = 2 cos

(
α+ β

2

)
cos

(
α− β

2

)
,

we find that
u1(x, t) + u2(x, t) = 2A cos(kx− ωt+ ϕ/2) cos(ϕ/2).

By the Principle of Superposition, this is the total displacement at (x, t) due to the contribution
of the two waves u1 and u2.
Notice that if ϕ = 0, then u1 = u2 and

u1 + u2 = 2u1 = 2u2;
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1 IMPORTANT IDEAS AND PROPERTIES

this is constructive interference, producing a waveform with double the amplitude of the original
waves. On the other hand, if ϕ = π, we have that

u1 + u2 = 0;

the waves have completely cancelled each other out (this is destructive interference).
What if our original waves had slightly different frequencies? Say

u1(x, t) = A cos(k1x− ω1t) k1 = k0 + ∆k; ω1 = ω0 + ∆ω

u2(x, t) = A cos(k2x− ω2t) k2 = k0 −∆k; ω2 = ω0 −∆ω.

Adding as above, we arrive at:

u(x, t) := u1(x, t) + u2(x, t) = 2A cos(∆kx−∆ωt)︸ ︷︷ ︸
beat wave

cos(k0x− ω0t)︸ ︷︷ ︸
carrier wave

.

But what do we ‘hear’? For the above wave, the average frequency is:

ω1 + ω2

2
=

(ω0 + ∆ω) + (ω0 −∆ω)

2
= ω0,

which is the note we hear! The beat wave has a speed ∆ω/∆k, and its amplitude is modulated by
2∆ω = ω1 − ω2.
Now, suppose we have a group of superimposed waves with very similar wavenumbers and angular
frequencies; this is equivalent to letting ∆k be small and assuming a ‘nice’ dependence of ω on k.
The speed of the resulting beat pattern (the group velocity) thus tends to

vg =
dω

dk

∣∣∣∣
k0

.

Figure 1: An example of beats

The group velocity is usually thought of as the speed at which energy or information is passed
along the wave. It is an important concept for example, electromagnetic waves in the ionosphere
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3 MECHANICAL WAVES

appear to have a wave speed greater than the speed of light! However, their group velocity is
always less than c.
Definition. Waves are said to disperse if the wave speed v, depends on the wavenumber k. Or,
equivalently, if ω is NOT proportional to k.
Examples. (a) For sound, we have that

ω =

√
β

ρ
=⇒ v =

√
β

ρ

(so NOT dispersive). Notice that in this case

vg =
dω

dk
=

√
β

ρ
= v =⇒ v = vg.

(b) For waves in deep water,

ω = α
√
gk =⇒ v = α

√
g

k

(the waves disperse). Here

vg =
dω

dk
=
α

2

√
g

k
=
v

2
=⇒ vg 6= v.

2 The Wave Equation

It can be shown that any one-dimensional wave y(x, t) = f(x − vt) will satisfy the following
equation:

∂2y

∂t2
= v2 ∂

2y

∂x2
.

(Note: this may be extended to higher dimensions; for 3-dimensional waves by replacing
∂2y

∂x2
with

the Laplacian ∆ y.)
For electromagnetic waves, we find that

∂2E

∂x2
= µ0ε0

∂2E

∂t2
,

giving us an expression for the speed of light

c =

√
1

µ0ε0
.

3 Mechanical Waves

3.1 Waves on a String

By resolving forces, it can be shown that for waves on a taut string, the wave equation is

∂2y

∂x2
=
µ

T

∂2y

∂t2
,

where T is the tension in the string and µ the mass per unit length. Thus, the speed of the wave
is

v =

√
T

µ
,
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3.2 Waves on a Rod 3 MECHANICAL WAVES

Figure 2: A section of a wave on a string

and the wave is not dispersive. How does this change for a ‘real’ string? The taut string will
stretch according to Hooke’s Law:

F = −Kx
(Note: do not confuse K, the spring constant, with k the wavenumber.)
Now we have

∂2y

∂t2
=
T

µ

∂2y

∂x2
− β

µ
y,

yielding the dispersion relation

ω(k) =

√
T

µ
k2 +

K

µ
=⇒ v(k) =

√
T

µ
+

K

µk2

3.2 Waves on a Rod

Suppose we apply a force F at one end of a rod with cross-sectional area A acting along the length
of the rod (see Figure 3), creating an elastic longitudinal wave.

Figure 3: An elastic longditudinal wave

Hooke’s Law tells us that, at all times, the stress is proportional to the strain, so if σ(x, t)
is the coordinate, at time t, of the cross-section of the rod which occupies position x in the rest
configuration, then

Stress =
F

A
, Strain =

∂σ

∂x
and we find that

F = Y A
∂σ

∂x
=⇒ ∂F

∂x
= Y A

∂2σ

∂x2
,

where Y is Young’s modulus, the constant ratio of stress to strain.
But we know that

F = mass× acceleration = m
∂2σ

∂t2
,
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3.3 Seismic Waves 3 MECHANICAL WAVES

and since the element of mass at x is dm = ρdV = ρAdx,

dF = ρAdx
∂2σ

∂t2
=⇒ ∂F

∂x
= ρA

∂2σ

∂t2
.

Equating the two expressions for
∂F

∂x
, we are left with

∂2σ

∂x2
=

ρ

Y

∂2σ

∂t2

. . . the wave equation! So, here

v =

√
Y

ρ
.

If were to have applied a force normal to the rod (see Figure 4), we would have created a transverse
shear wave and with speed

v =

√
G

ρ
,

where G is called the shear modulus.

Figure 4: A sheer wave

3.3 Seismic Waves

Earthquakes usually create two types of 3-dimensional wave:

• The Shear S-waves are transverse, with speed

vS =

√
G

ρ

• The Compressional P-waves are longitudinal and always travel faster than S-waves, with
speed

vP =

√
B + 4G/3

ρ
,

where B is the bulk modulus.
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3.4 Transfer of Power 4 REACHING A BOUNDARY

3.4 Transfer of Power

Suppose we apply a force to one end of a string, as in section 3.1. Then the rate of energy transfer
(the power) is

P = F · v = −F1y
∂y

∂t

= −F1x

(
∂y

∂x

)(
∂y

∂t

)
.

Remember that this is the instantaneous power at position x and time t, and is valid for any
waveform. Let us consider an arbitrary sinusoidal wave, y(x, t) = A cos(kx− ωt). We see that

∂y

∂x
= −Ak sin(kx− ωt) and

∂y

∂t
= Aω sin(kx− ωt).

So using the above equation for power, we find:

P (x, t) = FA2kω sin2(kx− ωt)

or, since v = ω/k and v2 = F/µ:

P (x, t) = ω2A2
√
µF sin2(kx− ωt).

Thus, averaging over the function, we find Pav ,the average power, to be

Pav =
1

2
ω2A2

√
µF .

Note: the power is proportional to the square of the amplitude and to the square of the frequency.
This is in fact true for all mechanical waves. For electromagnetic waves, however, the power is
still proportional to the square of the amplitude but NOT to the square of the frequency.

4 Reaching a Boundary

4.1 On a String

So what happens when a wave hits a boundary? Some energy is reflected and some is transmitted,
and certain conditions will be imposed on the wave at a boundary, as we shall now explore. Let
us consider waves on a string again.

• Fixed end. Suppose one end of the string is attached to a wall at position x0, as in Figure
5.

Figure 5: A fixed end boundary

Our boundary condition is then that

y(x0, t) = 0 for all t

(at x0, the string cannot move). The pulse is reflected and inverted as a consequence.
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4.1 On a String 4 REACHING A BOUNDARY

• Free end. Suppose that one end of the string is attached to a frictionless ring of negligible
mass which is free to slide along a frictionless rod, as in Figure 6.

Figure 6: A free end boundary condition

Now the boundary condition is that (
∂y

∂x

)
x0

= 0

(at x0, the rate of change of the vertical displacement must be zero, as the only force is from
the rod and acts normal to the rod). The pulse will be reflected but NOT inverted.

• Two strings, mass per unit length µ1 and µ2, joined together.

? µ1 < µ2: after the wave hits the boundary of the strings, we have the situation in
Figure 7.

Figure 7: µ1 < µ2

The reflected wave is inverted (c.f. fixed end).

? µ1 > µ2: now, as shown in Figure 8, the reflected wave is NOT inverted (c.f. free end).

Figure 8: µ1 > µ2

? µ1 = µ2: shown in Figure 9, there is complete transmission of the wave, i.e. all of
the energy is transmitted and there is no reflected pulse (the strings are impedance
matching).
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4.2 Reflection and Transmission Coefficients 5 THE DOPPLER EFFECT

Figure 9: µ1 = µ2

We can also impose two restrictions on the point where the two strings join.
Firstly, if we define this point to be on the line x = 0, the continuity of the string demands
that

y(x→ 0, t)string 1 = y(x→ 0, t)string 2.

If we call the incident wave yi, the reflected wave yr and the transmitted wave yt, this
condition tells us that

yi + yr = yt.

For a typical wave, this also means that:

Ai +Ar = At and Pi = Pr + Pt,

where A is the amplitude of each wave and P the power.
In addition, the tension in each string must be the same at the point where they meet, i.e.
the transverse force in each string must be equal at x = 0. So:

∂yi
∂x

+
∂yr
∂x

=
∂yt
∂x

.

In a sinusoidal wave, this means that

ki(Ai −Ar) = ktAt or
√
µi(Ai −Ar) =

√
µtAt,

where k is the wavenumber.

4.2 Reflection and Transmission Coefficients

We can use these relations to define two ratios, the reflection (R) and transmission (T ) coefficients,
as follows:

T =
At

Ai
=

2
√
µi√

µi +
√
µt

=
2Zi

Zi + Zt
,

R =
Ar

Ai
=

√
µi −

√
µt√

µi +
√
µt

=
Zi − Zt

Zi + Zt
,

where Z is the impedance, Z =
√
µF .

Notice that if µi < µt, then Zi < Zt and R is negative — this indicates that the reflected wave
is inverted. The maximum power transfer occurs when Zi = Zt (no reflected wave).

5 The Doppler Effect

This relates to an observed change in frequency of emitted waves if the source is moving relative
to the observer, for example the well-known phenomenon of red-shift of radiation from galaxies.
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5.1 Sound Waves 5 THE DOPPLER EFFECT

5.1 Sound Waves

Remark. Unlike with electromagnetic waves (c.f. PX109 – Relativity), it makes sense for mechan-
ical waves to talk about ‘moving’ sources (resp. observers) with ‘fixed’ observers (resp. sources);
the frame of reference of the medium is the obvious choice.

5.1.1 Moving Source, Fixed Observer

Suppose a source moving at speed u emits a sound wave of frequency ν and wavelength λ. Note
that the period of the wave is T = ν−1. Figure 10 illustrates the difference in what we would see
from a stationary and moving source.

Figure 10: Stationary and Moving Source

Note that
λ′ = λ− uT = λ− u

ν
;

recalling that λ = c/ν, we see that then

c

ν′
=
c

ν
− u

ν
=⇒ ν′ =

cν

c− u
=

ν

1− u
c

.

Remember that ν′ is the observed frequency, ν the emitted frequency and c here is the speed of
sound, not light! (Simply change the ‘-’ to a ‘+’ if you are considering a receding source.) The
expression is often approximated to

ν′ ≈ ν
(

1 +
u

c

)
.

5.1.2 Moving Observer, Fixed Source

Suppose now that the source is stationary, but the observer is moving towards it at a speed u.
The apparent speed of sound is now u+ c, so

ν′ =
c+ u

λ
= ν

(
1 +

1

c

)
.

5.1.3 Moving Source and Observer

Now we have that

ν′ = ν
c+ uo
c+ us

,
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5.2 Electromagnetic Waves 6 LIGHT

where u0 is the speed of the observer, and us the speed of the source (watch out for negative
signs!). If the source and observer are moving towards each other, you will find that ν′ > ν (and
that ν′ < ν when moving apart).

5.2 Electromagnetic Waves

Electromagnetic waves travel at the speed of light, which is a universal constant (same in any
reference frame!); we thus expect a slightly different result. If v is the velocity of the observer
relative to the source and c now the speed of light, we have that:

ν′ = ν

√
c− v
c+ v

.

When v � c, we may approximate this to

ν′ = ν

(
c− v
c+ v

)
.

(NB: v is positive if the observer is moving away from the source!)

6 Light

6.1 Overview

Maxwell’s Equations, which describe electric and magnetic fields, solve in free space (and in 1-D)
to the wave equations

∂2E

∂x2
= ε0µ0

∂2E

∂t2
,

∂2B

∂x2
= ε0µ0

∂2B

∂t2
.

Light waves are oscillating electric (E) and magnetic (B) fields. These fields are always both
perpendicular to each other and to the direction of motion of the wave (light is a transverse wave,
see Figure 11).

Figure 11: A wave diagram of light

Usually, the magnetic field is very small in magnitude, so we will only consider the electric
field.

11



6.2 Polarisation 7 REFLECTION AND REFRACTION

6.2 Polarisation

Due to the orthogonality restraint, the component of the electric field E along the direction of
motion of an electromagnetic wave (the x-direction, say) is always zero. Normally, the E-field a
fairly random mix of y- and z-components — unpolarised. For instance,

Ey(x, t) = Ey(x, t)̂j = E0y cos(kx− ωt)̂j,
Ez(x, t) = Ez(x, t)k̂ = E0z cos(kx− ωt)k̂.

We can polarise light using a filter (though this can also be done through reflection, scattering,
. . . ), i.e. we can ‘filter out’ some of the components of the electric field, leaving only those along
a chosen axis. If we were to put an identical second filter next to the first, we would find that no
light is transmitted when they are at 90◦ (all of the components are ‘filtered out’) and that the
transmitted light is most intense when they align (so the second filter does not remove any further
components).
If we let I0 be the intensity of the original beam of light, I the intensity of the polarised light and
θ the angle between the light’s original polarisation direction and the axis of the filter, Malus’ Law
tells us that:

I =
I0
2

cos2 θ.

We may have that Ey and Ez are out of phase with each other, say by ϕ.
If ϕ = 0,±nπ, then we have linear polarisation.
If ϕ = ±π/2, then we have circular polarisation. The electric field has a constant magnitude,
but now varies in direction — it ‘rotates’ about the direction of travel. We say we have left-hand
polarisation if ϕ = +π/2 and right-hand polarisation if ϕ = −π/2. Furthermore, if Ey 6= Ez we
will have elliptical polarisation.

6.3 Energy and Pressure

Defining the intensity, I, to be the power per unit area, we have that:

I =
1

2
ε0cE

2
0 ,

where E0 is the amplitude of the electric field, c the speed of light and ε0 the permittivity of free
space (note that this is independent of the frequency, unlike in the particle view of light, c.f. section
3.4).

There is a rate of flow of momentum, and consequently radiation exerts a pressure. So, if Prad

is the pressure and p the momentum, and using the relativistic expression E = pc for the photon
energy, a totally absorbing surface will experience a pressure

Prad =
Force

Area
=

1

Area

dp

dt
=

1

Area

d

dt

(
E

c

)
=

1

c

Power

Area
=
I

c
.

If the surface is totally reflecting then Prad =
2I

c
.

7 Reflection and Refraction

7.1 Snell’s Law, Fermat’s Principle and Total Internal Reflection

Suppose we have a beam of light travelling in air which passes into a pane of glass, as in Figure
12.
We know that θi = θr, but what about the angle of the transmitted ray?

12



7.2 Brewster’s Law 7 REFLECTION AND REFRACTION

Figure 12: Snell’s Law

Snell’s Law. ni sin θi = nt sin θt.
Here, n is the refractive index of the medium through which the wave is travelling, and defined as
n = c/v (where c is the speed of light in vacuum and v the speed of light in the medium). Note
that n can be wavelength dependent!
Snell’s Law can be shown to be a result of Fermat’s Principle or the principle of least time, which
tells us that out of all the hypothetical routes a beam of light could take from a point A to a point
B, it will always choose the quickest.

Notice that if the incident ray approaches at an angle greater than a critical angle, θc, there
will be no transmitted ray (see Figure 13) — we call this phenomenon total internal reflection.

Figure 13: Total internal reflection

It should be clear that θt must be at least 90◦ for total internal reflection to occur, and from
this we can find the critical angle:

ni sin θc = nt sin(90◦) =⇒ sin θc =
nt
ni
.

If θi > θc, there will be no transmitted wave.

7.2 Brewster’s Law

Reflection can polarise light. Let us consider the situation in Figure 14.
If the ray of light is incident at an angle θp, the polarisation angle, such that the resulting

transmitted and reflected waves are perpendicular to one another, we find that the reflected way
is linearly polarised and the transmitted ray partially polarised. Using this orthogonality, we find:

Brewster’s Law. tan θp =
nt
ni
.

13



7.3 Wavefronts and Huygen’s Principle 8 INTERFERENCE

Figure 14: Brewster’s Law

7.3 Wavefronts and Huygen’s Principle

Huygen’s Principle. Every point on a wave acts as a source of new spherical secondary waves,
such that the wavefront at some later time is the envelope of these secondary waves.

Figure 15: Huygen’s Principle

Figure 15 illustrates this idea (note that a solid line is a ‘wavefront’ — a locus of points at which
the wave has a given phase).
Remark. This is only a simplistic model. It is helpful in describing scattering when the wavelength
is much smaller than the object’s dimensions. The principle’s biggest drawbacks are that it does
not account for interference (maybe leading to diffraction) and that we would expect a backwards
travelling wave to form as a result, which is not observed!

8 Interference

8.1 Overview

Suppose we have two point sources, P1 and P2, as shown in Figure 16. What do we observe when
they superpose? Note that if we are to see interference effects, we must have coherent sources:
they must be emitting waves of the same frequency and have a constant phase relationship over
time (we shall assume this throughout).

So, at point P , two waves approach from the sources, which we shall describe by:

E1(t) = E0 cos(kx1 − ωt)
E2(t) = E0 cos(kx2 − ωt)

14



8.2 Interference in Films; Transmittance and Reflectance 8 INTERFERENCE

Figure 16: Interference effects

Then the Principle of Superposition (see section 1) tells us that the resulting wave is described by

E(t) = 2E0 cos

(
(x1 − x2)k

2

)
cos

(
(x1 + x2)k

2
− ωt

)
.

Notice that the amplitude is modulated by the time-independent term, and the time-dependent
term describes the envelope wave.
If x1 = x2 we have constructive interference and E = 2E1 = 2E2.
If x1 − x2 = λ/2, we have destructive interference and E = 0 (λ is the wavelength).

At any position P , the intensity I is given by

I = I0 cos2

(
k∆x

2

)
,

where ∆x = |x2 − x1| and I0 = 2ε0c
2E2

0 . The intensity at the centre of the interference pattern is
4 times that from a single source!

Referring back to Figure 16, if D � a, we may approximate

∆x ≈ a sin θ =⇒ I ≈ I0 cos2

(
ka

2
sin θ

)
.

Now, this has maxima when

ka

2
sin θ = nπ ⇐⇒ a

λ
sin θ = n

and minima when the waves are π out of phase, that is if

a sin θ =

(
n+

1

2

)
λ.

8.2 Interference in Films; Transmittance and Reflectance

At an interface between two different media, the transmittance, T , is given by

T =
4nint

(ni + nt)2
.

The reflectance, R, is given by

R =
(ni − nt)2

(ni + nt)2
.
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8.2 Interference in Films; Transmittance and Reflectance 8 INTERFERENCE

Figure 17: Thin film interference

Let us consider light waves approaching a thin film, as in Figure 17. We now have two reflected
waves, which will interfere.
The path difference between the two reflected waves is approximately 2t, and we find (a) con-
structive interference when 2t = mλfilm, m ∈ Z and (b) destructive interference when 2t =(
m+

1

2

)
λfilm, m ∈ Z. (NB: If n1 < n2, the wave is inverted!)

What if we had taken a thick film? Suppose our film was a 1 cm thick sheet of glass. As above,
we would see, at visible wavelengths, constructive interference at about 10000λ and destructive at
10000.5λ — the effects are ‘smeared out’. To exacerbate this, if the beam of light does not hit at
precisely 90◦, the difference in path length is to add to the ‘smearing’.
In other words, we need to use thin films to see interference effects!

...time to wave goodbye!

That’s everything you need to know about waves in a nutshell. Remember to ensure you have
learnt all the formulae and definitions before the exam, as there are often some nice simple marks
for stating these. Past papers are very useful, as the questions tend to follow a similar format.
Also, ensure you are confident working with partial derivatives, as these crop up a lot throughout
this module. Finally, good luck for the exam!
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