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Disclaimer

This revision guide has been put together using the sweat, blood and tears of MathsPhys Society
members.It is intended as a revision tool and as such does not contain the entirity of the module,
only the key elements. It was not complied, nor ratified by the University and most certainly
not collated by any past, current or future lecturer of the afore mentioned course. As such it
may be incomplete, may contain slight inconsistencies and although the utmost care has gone into
ensuring they are key minimal, slight inaccuracies. Should you find any of the above mentioned
please accept our apologies and find the time to drop us an email at the following address so we
can change it in future editions, exec@warwickmathsphys.co.uk.
First edition written by Emma Towlson and Typeset by Kieran Bhardwaj in March 2009.
Based off notes from the lectures given in 2007.
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2 BEFORE EINSTEIN

1 Introduction

“It is known that Maxwell’s electrodynamics–as usually understood at the present
time–when applied to moving bodies, leads to asymmetries which do not appear to be
inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a
magnet and a conductor. The observable phenomenon here depends only on the relative
motion of the conductor and the magnet, whereas the customary view draws a sharp
distinction between the two cases in which either the one or the other of these bodies is
in motion. For if the magnet is in motion and the conductor at rest, there arises in the
neighbourhood of the magnet an electric field with a certain definite energy, producing
a current at the places where parts of the conductor are situated. But if the magnet is
stationary and the conductor in motion, no electric field arises in the neighbourhood
of the magnet. In the conductor, however, we find an electromotive force, to which
in itself there is no corresponding energy, but which gives rise–assuming equality of
relative motion in the two cases discussed–to electric currents of the same path and
intensity as those produced by the electric forces in the former case.”

- A. Einstein, On the Electrodynamics of Moving Bodies, June 30 1905

Special Relativity applies the principal of relativity (that all motion is relative rather than there
being a well defined state of rest, proposed by Galileo) to frames in uniform relative motion. So
we’re just going to brush gravity and acceleration under the carpet for now!
This guide will take you through the principles and consequences of Special Relativity and hope-
fully provide a helpful resource for preparing for your exam (sorry, last time I’ll mention it!)

“The hardest thing in the world to understand is income tax.”

- A. Einstein

2 Before Einstein

2.1 A Quick Revision Of Newtonian Physics

You’re probably sick to death of this by now, so this section is just intended as a summary of the
main principles of mechanics we know (or assume!) and love from classical physics.

• Newton’s First Law: A body continues in its state of rest or uniform motion unless it is
acted upon by an external force.

• Newton’s Second Law: The rate of change of a body’s momentum is equal to the total
force acting on it:

• F = d
dt (p)

• Newton’s Third Law: For every action, there is an equal and opposite reaction.

Definition: Uniform motion is motion in a straight line at constant velocity.
Notice: Newton’s Second Law assumes that mass is a constant, which we shall see is not the
case.

• Velocity is the rate of change of position in a specified direction: Vx = dx
dt

• Acceleration is the rate of change of velocity in a specified direction: ax = dVx

dt

• Linear momentum p = mv
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2.2 Galilean Transformations 2 BEFORE EINSTEIN

• Momentum must be conserved.

• Energy cannot be created or destroyed, so must be conserved.

• The work done by a force, F, in moving a body from x=0 to x=x1 (independent of the path
chosen):

W =
∫ x=x1

x=0

Fxdx =
∫ v

0

mv dv = ∆EKE

Definition: A quantity is INVARIANT if it can be considered the same in any frame of reference.
Newton believed that time was invariant, but this is not in fact the case.

2.2 Galilean Transformations

Suppose we have two frames of reference, S and S′. Suppose also that S′ is moving at a constant
velocity, u, in the positive x-direction, and that at time t = 0 their origins coincided (O = O′).
(See Figure 1) It should be clear (treated classically) that at time t = t, the distance between the

Figure 1: S and S’ frames of reference

two frames is ut. So we must have that x′ = x−ut. Since the motion is entirely in the x-direction,
we have that at any time, y = y’ and z = z’.
Now consider a stationary point P observed from both frames (as in Figure 1). We may relate its
position relative to frame S to its position relative to S’ using the above. These are the intuitive
Galilean transformations:

Transform Inverse Transform

x′ = x− ut x = x′ + ut

y′ = y y = y′

z′ = z z = z′

t′ = t t = t′

3



2.3 The Michelson-Morley Experiment 2 BEFORE EINSTEIN

What if P had a velocity? Suppose it is moving at a constant speed in the x-direction, and its
velocity relative to frame S is v (and v′ relative to S′). Then simply by differentiating the top
terms in transform equations, we see that:

v′ =
d

dt
x′ = v − u v =

d

dt
v′ + u

Unfortunately, this is no longer accurate at speeds close to that of light.
Definition: An inertial frame is a uniformly moving reference frame.
Remember: Motion must always be referred to a frame of reference.

2.3 The Michelson-Morley Experiment

In the nineteenth century, physicists believed in a stationary ether - the thought was that light
must travel through some medium, like waves may travel through water or along a string etc. So,
supposing there is an ether, it follows that an ‘ether wind’ would be induced in the laboratory
by the motion of the Earth through the ether, and that this would hinder the progress of light
travelling against it. In 1887, Michelson and Morley carried out an ingenious experiment to detect
the hypothesised drag.
Using the configuration of mirrors shown in Figure 2, they split a beam of light into two perpen-
dicular beams (with the half-slivered mirror) and then rejoined these beams. Now, they reasoned
that the beam travelling perpendicular to the ether wind would have to travel further than the
parallel beam. Thus there would be a slight delay in one of the beams when it recombined through
interference with the other beam - this would result in a predicted fringe shift of about one twenty-
fifth of a fringe. (NB The apparatus was free to rotate, allowing any direction relative to the ether
wind.)

Figure 2: The Michelson-Morley Experiment

but they did not observe any significant fringe shift, providing strong evidence against the idea
of an ether.
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3 AFTER EINSTEIN

Figure 3: The predicted movement of the lightbeam and mirror in the ether

3 After Einstein

3.1 Einsteins Postulates

Figure 4: Einstein

1. The laws of physics are the same in all inertial frames.

2. The speed of light in empty space (a vacuum) is the same in all inertial frames and is
independent of the motion of its source.

Remember these - you will almost certainly be asked about them!

3.2 Minkowski Diagrams And Simultaneous Events

Suppose lightning struck both the front and back of a train (it’s a pretty unlucky train), and
that both flashes appear simultaneous to an observer on the ground. To an observer on the train,
however, lightning struck the rear first how can this be?
Minkowski Diagrams (Space-Time Diagrams) allow us to see what is going on much more easily.
Along the horizontal axis, we have x, the distance from a defined origin. Along the vertical axis,
we have ct (notice that this has units of distance, but may be thought of as time increments). So
a beam from of light emitted from the origin would be represented by the line x = ct (at 45o to
the axes).
Consider two stationary observers at points A and C (see Figure 5(a) ). If a beam of light were
emitted from point B, it would reach both observers at the same time, t1. Now suppose that both
observers are moving at a speed u in the positive x-direction. Refer to Figure 5(b) - the light
beam will now reach A first (at time t1), and C later (at time t2). The lesson is that events which
are simultaneous in one inertial frame are not necessarily simultaneous in another.
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3.2 Minkowski Diagrams And Simultaneous Events 3 AFTER EINSTEIN

Figure 5: a)Two stationary observers, b) Two moving observers

So can we construct a Minkowski Diagram? Suppose frame S′ (co-ordinates (x′, ct′)) is moving
at a speed u relative to frame S (co-ordinates (x, t)). We have the situation in Figure 6. But we
need to calibrate the axes. Notice that the ct′ axis is the line x′ = 0.

Figure 6: Minkowski diagram calibration

So from the Lorentz Transformations (see section 3.3.1), we see that it must be the line ct = (c/u)x.
Similarly, the x′ axis is the line ct′ = 0, so must be the line ct = (u/c)x.
Fact: (ct′)2 − (x)′2 = (ct)2 − x2 = s2. s2 is invariant - it is the same for all observers. The
intersection of x′-axis with (x′)2 − (ct)2 = 1 defines x = 1.
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3.3 What Does This Mean Spatially? 3 AFTER EINSTEIN

3.3 What Does This Mean Spatially?

3.3.1 Lorentz Transformations

To see how the Galilean Transformations must change to accommodate Einstein’s postulates, let
us consider the following arrangement. Suppose there are two inertial reference frames, S and S′,
where S′ is travelling at a speed u in the positive x-direction as measured in S (see Figure 7).
(From now on, whenever you see S and S′, assume this definition.)

Figure 7: Inertia Frames S and S′

Let us also suppose that at time t = 0, the origins of the two frames (O and O′) coincided and
that a flash of light is emitted from O. After a time t, an observer at O notices that the beam of
light has reached point P , which is a distance r from O and a distance r′ from O′. If we know the
co-ordinates of P in frame S, how can we relate them to the co-ordinates in S′? As before, the
y- and z- co-ordinates are easy: frame S′ is only travelling in the x-direction, so we may assume
that y = y′ and z = z′. What about the x-co-ordinate? Firstly, note that r = ct, where c is the
speed of light. But from the Pythagorean Theorem, we also see that:

r2 = x2 + y2 + z2

So we must have that:
x2 + y2 + z2 = c2t2

Now, we cannot assume that the same amount of time has passed in frame S′ (as S and S′ are in
relative motion). So let us say that a time t′ has passed. Then applying the same principles as
above, we have that:

(x′)2 + (y′)2 + (z′)2 = (r′)2 = c2(t′)2

How do we proceed? Well, we know that for u << c, we must be left with our original Galilean
Transformations (these are what we observe at small velocities!). So let us say that:

x′(x, t) = γ(x− ut)

for some γ which increases in significance as u approaches c, but approaches 1 as u is decreased,
and that:

t′(x, t) = α(t− βx)

7



3.3 What Does This Mean Spatially? 3 AFTER EINSTEIN

for some α with the same conditions as γ and some β which approaches 0 as u is decreased.
Substituting x′(x, t) = γ(x−ut) and t′(x, t) = α(t−βx) into (x′)2 + (y′)2 + (z′)2 = (r′)2 = c2(t′)2

and trawling through some messy algebra (the reader should feel free to try this an exercise!), we
arrive at our destination: the Lorentz Transformations, which are as follows:

x′ = γ(x− ut)

y′ = y

z′ = z

t′ = γ(t− ux

c2
)

and, naturally, the inverse Lorentz Transformations:

x = γ(x′ + ut′)

y = y′

z = z′

t = γ(1− ux′

c2
)

where:
γ =

1√
1− u2

c2

Remember: u is the velocity of S′ as measured in S.
Does γ behave as we dictated? Plotting it as a function of u (see Figure 8), we see that its value
only really starts to grow from 1 at around 0.5c this is 1.5108 m/s!

Figure 8: Graph of γ
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3.4 What Does This Mean For Time? 3 AFTER EINSTEIN

Figure 9: Length Contraction Visually

3.3.2 Length Contraction

The hint is in the title - the length of a body in motion relative to the observer will be measured
to be shorter than if it were at rest. To see this, let us simply consider a straight bar observed
from frames S and S’ (see Figure 9 for a Minkowski diagram illustrating the bar). The bar lies
along the x-axis, with its ends at x1 and x2. The bar is at rest relative to S, so we may define the
proper length, Lo, to be:

Lo = x2 − x1

What would an observer in S′ measure? Remembering that time is always changing, we must
measure the position of each of its end points (now located at x′1 and x′2) in one instantaneous
measurement at time t = t′. Using the inverse Lorentz Transformations, we see that:

x1 = γ(x′1 + ut′)

x2 = γ(x′2 + ut′)

=> x2 − x1 = L0 = γ(x′2 − x′1)

But x′2 − x′1 = L′, where L′ is the length of the bar measured in S′. So we have that:

L0 = γL′ or L′ =
L0

γ

Remember: If L′ > L0 you’ve done something wrong!

3.4 What Does This Mean For Time?

3.4.1 Time Dilation

This is a very similar calculation to that for length contraction, but with the opposite result: the
time difference between two events is smaller in the rest frame of the events than in any other
frame in relative motion.
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3.5 What Does This Mean For Velocity? 3 AFTER EINSTEIN

Suppose an observer in frame S at position x0 measures the time for Event 1 to be t1 and for
Event 2 to be t2. This is the rest frame, and we define the proper time, ∆t, to be:

∆t = t2 − t1

This much is obvious, but what is the time difference ∆t′ in S′, which is travelling at a velocity
u relative to S? Let us say that Event 1 occurs at time t = t′1 and Event 2 at time t = t′2. Then
applying the Lorentz Transformations, we see that:

t′1 = γ(t1 −
ux0

c2
) and t′2 = γ(t2 −

ux0

c2
)

=> t′2 − t′1 = γ(t2 − t1)

=> ∆t′ = γ∆t or ∆t =
∆t′

γ

3.5 What Does This Mean For Velocity?

3.5.1 Lorentz Transformations Of Velocity

Let us return to our S and S′ frames, and consider an object moving in the positive x-direction
with speed vx relative to S (and v′x′ relative to S′) - as in Figure 10. How can we relate vx and
v′x′? Firstly, note from the Lorentz Transformations that:

Figure 10: Velocity in S and S′ Frames

∆x′ = γ(∆x− u∆t)

∆t′ = γ(∆t− u∆x
c2

)

Also, by definition:

vx =
dx

dt
v′x =

dx′

dt

and then please grit your teeth through this abuse of mathematics! (Physicists will generally wave
their hands and declare authoritatively that “it works”) Using ∆x′ = γ(∆x− u∆t):

dx′ = γ(dx− udt)
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3.5 What Does This Mean For Velocity? 3 AFTER EINSTEIN

=> dx′ = γ(
dx

dt
− u

dt

dt
)dt

dx′ = γ(vx − u)dt

And using ∆t′ = γ(∆t− u∆x
c2 ):

dt′ = γ(dt− udx

c2
)

dt′ = γ(
dt

dt
− u

c2
dx

dt
)dt

dt′ = γ(1− uvx
c2

)dt

So:

v′x′ =
dx′

dt′
=

γ(vx − u)dt
γ(1− uvx

c2 )dt

∴ v′x′ =
vx − u

1− uvx

c2
or vx =

v′x′ + u

1 +
uv′

x′
c2

Remember: It’s easy to get confused here - u is the speed of S′ as measured in S; vx is the speed
of the object relative to S; v′x′ is the speed of the object relative to S′.
Notice: Try ’plugging in’ vx=c. What is v′x′?

3.5.2 The Relativistic Doppler Effect

You should be familiar with the Doppler Effect, most easily observed in the form of red or blue
shifts from stars moving relative to the Earth (see Figure 11). But surely there are relativistic
effects here? Let’s work it through.

Figure 11: Doppler Shift

Call the rest frame of the star S, and the rest frame of the Earth S′ (we shall assume that the star
is moving away from Earth, thus S from S′, at a relative speed u in the positive x-direction). In
frame S, the light emitted is of frequency F0 and period T0. This is observed in S′ as frequency
F ′ and period T ′.
During one period, a time ∆t′ = γT0 passes in frame S′ BUT - the star is receding during this
time, moving a distance of ∆x′ = γuT0, observed on Earth. This delays the light by:

∆x′

c
=
γuT0

c

Thus the period T ′ observed in S′ (Earth) is:

T ′ = γT0(1 +
u

c
)

T ′ =
T0(1 + u

c )
[(1 + u

c )(1− u
c )]1/2
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3.6 Conservation Laws 3 AFTER EINSTEIN

T ′ = T0

√
1 + u

c

1− u
c

Then noting that F ′ = 1
T ′ and F0 = 1

T0
, we conclude that:

F ′ = f0

√
1− u

c

1 + u
c

Remember: This equation is for a receding star. If the star is approaching, we simply have
F ′ = f0

√
1+ u

c

1−u
c

.

3.6 Conservation Laws

In this section, we consider linear momentum and mass (see section 3.8 for more on mass-energy).
Can we find an expression for relativistic mass and momentum? Let us make two sensible assump-
tions: a) Relativistic mass is conserved in all inertial reference frames; and b) Linear momentum
is conserved in all reference frames.
Definition: The rest mass of a body, m0, is simply that - its mass when it is not in motion. The
closer to the speed of light a body is travelling, the heavier it appears to be. For clarity, in this
section we shall say that a body has mass m(u) if it is travelling at a speed u.
Now, suppose we have two identical bodies, each of rest mass m0, each travelling towards the
other at a speed u. They collide inelasticly and stick together. We need to consider this collision
in two frames - frame S will observe the situation described, and frame S′ will be the rest frame
of body 1 (see Figure 12 for full description). First thing’s first: what is v? (NB We need to be

Figure 12

very careful with signs!) We know that in frame S, the speed of body 2 is −u. So let’s apply the
Lorentz Transformation for velocity to find it in frame S:

v′x′ =
xv − u

(1− uvx

c2 )

12



3.7 Force 3 AFTER EINSTEIN

But here, v′x′ = −v and vx = −u (warned you about the signs!). So:

−v =
−u− u

1− u(−u)
c2

=> v =
2u

1 + u2

c2

Now we may continue. Applying conservation of relativistic mass, we see that:

Frame S : M0 = 2m(u)

Frame S′ : M(u) = m0 +m(v)

Then applying conservation of linear momentum to frame S′, we see that:

−M(u)u = −m(v)v

This is enough information. Try the algebra yourself (remember that M(u)
M0

= m(u)
m0

must hold if
we are to find a universal relationship) - you should find that:

m(u) = γ(u)m0

=> m = γm0

where m is the relativistic mass of the body. Remembering the definition of momentum, it should
be easy to see that relativistic momentum, p

rel
, is defined as:

p
rel

= γm0v

3.7 Force

We have two major problems when considering relativistic forces:

• Acceleration is not invariant (it is in Newtonian mechanics).

• Force is not usually in the same direction as the resultant acceleration (it is parallel in
Newtonian mechanics).

Thus there is not much we can do at this stage! We still have the relationship: F =
dp

dt (Newton’s
2nd Law) but what is this now?

F rel =
d

dt
(p
rel

)

F rel =
d

dt
(γm0v)

=> F rel = γm0
dv

dt
+m0v

dγ

dt

... as both γ and v depend on time.
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3.8 Energy And Mass 3 AFTER EINSTEIN

3.8 Energy And Mass

Now here’s an idea to make Newton turn in his grave!
The Principle of Mass-Energy: Mass may be created or destroyed, but at the cost of an
equivalent amount of energy either vanishing or appearing respectively.
This must mean that we can find a relationship between mass and energy. Let’s consider a body
(initially at rest) which is being acted on by a force in the positive x-direction. We know from
Newtonian mechanics that work done = change in kinetic energy (EKE), ie:

EKE =
∫ v

0

dp

dt
dx =

∫ v

0

dx

dt
dp =

∫ v

0

vdp

We need to integrate this by parts, as follows:

EKE = pv −
∫ v

0

p
dv

dp
dp = pv −

∫ v

0

pdv

But p
rel

= γm0v. So:

EKE = γm0v
2 −

∫ v

0

γm0vdv = γm0v
2 − [−m0c

2

γ
]v0

EKE = γm0v
2 +

m0c
2

γ
−m0

EKE = γm0[v2 + c2(1− v2

c2
)]−m0c

2

EKE = γm0(v2 + c2 − v2)−m0c
2

EKE = γm0c
2 −m0c

2

=> EKE = (γ − 1)m0c
2

In fact, m0c
2 is the rest mass energy, E0. So we have that the total energy, Etot, is:

Etot = EKE +m0c
2

Etot = γm0c
2

Note: You may be wondering about potential energy - if you want this answering, take the 4th
Year course in General Relativity! You do not need to worry about it for this course.
Let us have another look at relativistic mass. We have that:

m = γm0

Note: E2
0 is invariant. So:

m2
0 = m2(1− v2

c2
)

=> m2
0c

2 = m2c2 −m2v2

=>
E2

0

c2
=
E2

c2
− p2

∴ E2 = E2
0 + p2c2 = m2

0c
4 + p2c2
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4 CHEAT SHEET

4 Cheat Sheet

This is by no means everything you need to know, but hopefully a helpful summary of equations
you’ll need. Don’t panic if you’re asked about a change in, say, the y direction - just swap x’s and
y’s. Good luck with the exam! (OK, I mentioned it once more)
Newtonian Relativistic

Galilean Transformations: Lorentz Transformations:
x′ = x− ut x′ = γ(x− ut)
y′ = y y′ = y
z′ = z z′ = z
t′ = t t′ = γ(t− ux

c2 )

γ = 1√
1−u2

c2

v′ = v − u v′x′ = xv−u
1−uvx

c2

Mass invariant m(u) = γ(u)m0

Length = x2 − x1 L0 = x2 − x1 but
L′ = L0

γ

Time invariant, ∆t = t2 − t1 ∆t′ = γ∆t

Momentum: p = mv p
rel

= γm0v

Force F = d
dt (mv) F rel = d

dt (prel)
= ma = γm0

dv
dt +m0v

dγ
dt

EKE = 1
2mv

2 EKE = (γ − 1)m0c
2

Rest Mass Energy = m0c
2

Etot = γm0c
2

Doppler effect (receeding source):

F ′ = F0(1− u
c F ′ = F0

√
1−u

c

1+ u
c

F ′ = 1
T ′ ; F0 = 1

T0

E2 = E2
0 + p2c2

= m2
0c

4 + p2c2

E2
0 is invariant

c2t2 − x2 = l2

l2 is invariant
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