
PX262 - Quantum Mechanics & its Applications Formulae list and derivation

Contents

1 Formal Quantum Mechanics 3
1.1 Postulates of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Principle of Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Orthonormal Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Correspondence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Schrödinger’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Models and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Reality and Hermiticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.1 Operator Complex Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Commutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Time Dependence of Expectation Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Formal Applications of Quantum Mechanics 14
2.1 Two State System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Matrix Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Amonia Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Fermions and Bosons and Exchange symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Ladder Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Molecular Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Angular Momentum Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Self Commutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Angular Momentum in Spherical Polar Coordinates . . . . . . . . . . . . . . . . . . 23
2.4.3 Commutation with Hamiltonian Operator . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Raising and Lowering Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Particle on a Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Spin Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Hydrogen Like Atoms 32
3.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Energy Levels in Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Multiple Electron Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Central Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Hund’s First Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Free Fermi Gases 36
4.1 Fermi Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Lower Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3 Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Fermi Energy and Wavevector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Free Electron Gases in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Magnetic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Compact Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Limitations of the Free Fermion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1



PX262 - Quantum Mechanics & its Applications Formulae list and derivation

5 Crystals and Lattices 48
5.1 Bravais Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Reciprocal Lattice Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Bragg Diffraction and Miller Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Nearly Free Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Bands and Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Semiconductors 52
6.1 Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Aligning Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Standard Model 54
7.1 Klein-Gordon Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Pauli Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.1 Eigenvectors and Eigenvalues of Pauli matrices . . . . . . . . . . . . . . . . . . . . . 59
7.4 Dirac Equation in the Rest Frame of the Particle . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Dirac Equation for Massless Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.6 Forces in Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.6.1 Weak Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6.2 Fermi Weak Delta Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6.3 Strong Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.7 Flavour Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.7.1 K Meson Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2



PX262 - Quantum Mechanics & its Applications Formulae list and derivation

1 Formal Quantum Mechanics

1.1 Postulates of Quantum Mechanics

We will start with a list of postulates of quantum mechanics. This list is intentionally not numbered, as
the postulates are not axioms, and should not be taken as such. Perhaps some are derivable using others,
but the following list should be somewhat self-consistent.
Firtly, all mechanical properties of a mechanical system are obtainable from its state function. That is
any system, single or multiple particle, with forces or without them, any system is from our perspective
reducable to a single, complex valued scalar state function.
The state function is often expressed as wavefunction, which obeys Born rule, i.e.∫

V

|Ψ(~r, t)|dV = 1 (1)

where V is the configuration space, (~r, t) is a vector in the configuration space and dV is the element of
the configuration space. Often, we also say that such a function is normalised.
The mechanical properties obtainable from the state function that are experimentally accesable are called
observables. They are obtained via their associated operators, which usually take some differential operator
form. These operators transform the function into another function, which can be then further used to find
the value of the observable. The observable values are always real. Operators are usually denoted as Q̂,
where Q is the classical symbol for the observable.
When a measurement is made, the resulting value of the observable is an eigenvalue of the associated
operator acting on a function. If the state function is not the eigenfunction of the operator, linear super-
position of eigenfunctions of the operator is used to express the state function. After the measurement, the
state function becomes the eigenfunction of the operator of the observable measured. If there are multiple
eigenvalues possible (original function was not an eigenfunction), the eigenvalue and new eigenfunction are
randomly with probability |cn|2, where cn is the complex coefficient in the superposition series for the old
function.
The expectation value of an observable < Q > (average value after many measurements under exactly the
same conditions) is given by

< Q >=

∫
V

Ψ∗Q̂ΨdV (2)

States that are not being measured evolve according to time dependent Schrödinger equation

ĤΨ = ih̄
∂

∂t
Ψ (3)

where Ĥ is the Hamiltonian total energy operator.
Lastly, forms of operators are either derived from their inner relationships or using the correspondence
principle - operators are build from a set of two basic operators - position and momentum, or position and
energy - by writing the classical expression in terms of position and momentum etc. and then replacing the
variables by operators.
The postulates on their own are rather abstract, they are best only referenced in time when needed,
otherwise ideally remembered as a whole.

1.1.1 Principle of Superposition

Say we have a general wavefunction Ψ and want to operate on it with an operator Q̂, which has eigenfunc-
tions Ψn and their corresponding eigenvalues qn. Then we represent the function Ψ as

Ψ =
∑
n

cnΨn (4)

Therefore, the expectation value of the variable Q is (m runs over the range of n)

< Q >=

∫
V

Ψ∗Q̂ΨdV =

∫
V

(∑
m

cmΨm

)∗
Q̂

(∑
n

cnΨn

)
dV =

∫
V

(∑
m

c∗mΨ∗m

)(∑
n

cnQ̂Ψn

)
dV =

=

∫
V

(∑
m

c∗mΨ∗m

)
(cnqnΨn) dV =

∫
V

(∑
n

qn
∑
m

cnc
∗
mΨ∗mΨn

)
dV =

∑
n

qn
∑
m

cnc
∗
m

∫
V

Ψ∗mΨndV

The expectation value is then some form of weighted sum of eigenvalues of all eigenfunctions of the operator.
Further advance can be made if the eigenfunctions are orthonormal.
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1.1.2 Orthonormal Eigenfunctions

We say that the eigenfunctions are orthonormal iff∫
V

Ψ∗mΨn = δmn (5)

where δmn is the Kronecker delta.
Then, the expectation value simplifies to

< Q >=
∑
n

qn
∑
m

cnc
∗
m

∫
V

Ψ∗mΨndV =
∑
n

qn
∑
m

cnc
∗
mδnm =

∑
n

qn|cn|2 (6)

This corresponds to our macroscopical perspective - each measurement measures qn with probability |cn|2
- the expectation value is then naturally the weighted sum of these values by their probabilities.

< Q >=
∑
n

qnPn

which we derived from the orthonormality condition and our postulates.
One more observation can be made - we required that Ψ is normalized. This means that∫

V

Ψ∗ΨdV = 1

1 =

∫
V

(∑
m

c∗mΨ∗m

)(∑
n

cnΨn

)
dV =

∑
n

∑
m

cnc
∗
m

∫
V

Ψ∗mΨndV =
∑
n

∑
m

cnc
∗
mδnm =

∑
n

|cn|2

Hence ∑
n

|cn|2 = 1 (7)

1.1.3 Hilbert space

We can notice that the eigenfunctions of an operator form a Hilbert space of functions, with inner product
defined as

< Ψm,Ψn >=

∫
V

Ψ∗mΨndV

This operation is positive definite for any eigenfunction with itself.
All requirements can be checked, but we will not discuss them here. However, it should be noted that the
consequences of the functions being part of a Hilbert space with given inner product follow, so for example
Cauchy-Schwarz inequality holds

< f, f >< g, g >≥ | < f, g > |2 = | < g, f > |2

In our language, this means that(∫
V

f∗fdV

)(∫
V

g∗gdV

)
≥
∣∣∣∣∫
V

f∗gdV

∣∣∣∣2 =

∣∣∣∣∫
V

g∗fdV

∣∣∣∣2 (8)

1.2 Dirac Notation

Dirac notation is a notation for the inner products in Hilbert space modified for Quantum mechanics. The
inner product is denoted as

< f, g >=< f |g >

and if we search for an expectation value, it is denoted as

< Q >=

∫
V

f∗Q̂gdV =< f |Q̂|g >

Furthemore, the second vector/function |g > is used to represent the function g itself. We often do not
write the function g inside these so called ”kets” explicitly, rather we write some label, such as |up >= g
or |1 >= g.

4
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The other part of the expression is called the ”bra” part (together form a ”bracket”). This expression is
essentially a integral operator expression

< f | =
∫
V

dV f∗

Many expressions and relations we will derive have more managable form in the Dirac notation, and it is
especially useful to denote states for which we do not now the wavefunction explicitly.
Some of the expressions we already derived are for example Cauchy-Schwarz inequality

< f |f >< g|g >≥ | < f |g > |2

Normalization condition
< Ψ|Ψ >= 1

Orthonormality condition
< Ψm|Ψn >= δnm

and we could go on and on.

1.3 Correspondence Principle

In order to be able to derive explicit forms of operators, we need to choose at least two specific operators.
First we choose is the position operator, r̂. We choose the wavefunction to exist in real space, and then
require the position operator to be simply multiplicative

r̂Ψ = ~rΨ

This means that the wavefunction will be required to somehow represent the position of the particle, which
is intuitively understandable. This also means that when measuring the position, the posibility of observing
a particle at certain position is proportional only to the modulus squared of Ψ. We then say that |Ψ|2 is
the probability density of observing particle at certain position.
We choose the momentum operator with analogy to plane waves. Lets imagine that Ψ is a right travelling
wave. Then

Ψ = Ψ0e
i(~k·~r−ωt)

∇Ψ = Ψ0e
i(~k·~r−ωt)

(
ikxî+ iky ĵ + ikz k̂

)
= i~kΨ

Hence
−ih̄∇Ψ = h̄~kΨ

By de Broglie relation
−ih̄∇Ψ = ~pΨ

Hence we have our momentum operator
p̂ = −ih̄∇

But, if we choose Ψ = Ψ0e
−i(~k·~r−ωt), we would end up with p̂ = ih̄∇. Therefore, the sign before the i is a

little bit ambivalent, and depends on preffered notation for plane waves.
From these two operators, we can build other operators. First one that comes to mind is the kinetic energy
operator. By correspondence, kinetic energy T is

T =
~p · ~p
2m

=
|~p|2

2m

Hence in operator language

T̂ =
p̂ · p̂
2m

= −h̄2∇ · ∇
2m

= − h̄2

2m
∇2

Where ∇2 is the Laplacian operator.
The potential energy operator can be set to be also only a multiplicative operator, i. e.

V̂ = V

Therefore, we have our total energy hamiltonian operator

Ĥ = T̂ + V̂ = − h̄2

2m
∇2 + V

5
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And TDSE is

− h̄2

2m
∇2Ψ + VΨ = ih̄

∂

∂t
Ψ

Similarly, we can derive forms of operators for angular momentum. In classical physics

~L = ~r × ~p

for point particle. This is a set of three equations

Lx = ypz − zpy

Ly = zpx − xpz
Lz = xpy − ypx

This can be directly translated to operator language

L̂x = ŷp̂z − ẑp̂y

L̂y = ẑp̂x − x̂p̂z

L̂z = x̂p̂y − ŷp̂x
Here, the p̂x operator is operator that extracts the x component of the momentum, which is simply the x
component of the operator p̂, so

p̂x = −ih̄ ∂

∂x

Similarly for other components, and of course x̂ = x, as for other components as well. The reason these
are not written as a vector will become apparent later, but it is essentially because separate components of
the angular momentum are not compatible - they cannot be all known at the same time.

1.4 Schrödinger’s equations

The states that are not being observed evolve according to time dependent Schrödinger equation. This
equation involves a time derivative of the wavefunction, and therefore enables us to describe the time
dependence of the wavefunction. Without derivation, the equation is

ĤΨ = ih̄
∂

∂t
Ψ (9)

We know the form of Hamiltonian operator, so the time dependent Schrödinger equation (TDSE) becomes(
− h̄2

2m
∇2 + V

)
Ψ = ih̄

∂

∂t
Ψ (10)

Now, if the potential energy does not change with time, there exists a special stationary class of solutions,
for which we can write Ψ = ψ(~r)φ(t) , where ~r is the position vector. Then, the equation becomes

− h̄2

2m
φ∇2ψ + V ψφ = ih̄ψ

∂φ

∂t

Dividing by ψφ

− h̄2

2m

1

ψ
∇2ψ + V = ih̄

1

φ

dφ

dt

The left side of the equation is now only the function of position, while the right side is only function of
time. Therefore, both sides together must be equal to a constant. Also, as φ is only function of time, we
can change the partial derivative to total derivative. Then, the equation for time part becomes (naming
separation constant E)

E = ih̄
1

φ

dφ

dt

dφ

dt
= − iE

h̄
φ

6
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This is a simple differential equation with solution

φ = Ae−i
E
h̄ t (11)

But, this means that the total wavefunction only rotates in phase with time, but otherwise does not change,
because

Ψ = Aψe−i
E
h̄ t

Also, the probability density of finding the particle becomes

|Ψ|2 = AA∗|ψ|2

which is completly stationary. Therefore, the only function we need to derive in order to describe stationary
state solutions of Schrödinger equation is the ψ function. Using the separation

− h̄2

2m

1

ψ
∇2ψ + V = E

And therefore

− h̄2

2m
∇2ψ + V ψ = Eψ (12)

this is called the time independent Schrödinger equation (TISE), and we can now interpret the constant
of separation E as the total energy of the system. The solution to this equation depends on exact form of
potential V , and we will discover specific solutions later on. This equation is generally easier to solve than
TDSE.

1.5 Models and Matrices

In many cases, we know either from experiment or from other physic’s requirements that certain system
has only limited amount of states that it can be in. However, these states might not be the eigenstates of
the Hamiltonian operator. This means that if Ψi is the state we know exists for the system, the operation

ĤΨi =

(
− h̄2

2m
∇2 + V

)
Ψi 6= Ei(t)Ψi = ih̄

∂

∂t
Ψi

where the energy of the state Ei can generally depend on time. This means that such states do not obey
TDSE. However, we can try to find the energy eigenstates as linear combinations of the known states Ψi.
Let Ψ′ be some eigenstate of hamiltonian operator (for which TDSE applies), and let

Ψ′ =
∑
i

ci(t)Ψi

where we allow for the coefficients to depend on time, but not on space (the superposition would otherwise
not really make sense).
Lets now, for the sake of brevity, change to Dirac notation. Therefore, the equation above becomes

|Ψ′ >=
∑
i

ci(t)|Ψi >

The TDSE is (in Dirac notation)

Ĥ|Ψ′ >= ih̄
∂

∂t
|Ψ′ >= E′(t)|Ψ′ >

where E′ is the total energy of state |Ψ′ > since this state is an eigenstate. Then, doing integration by
< Ψi|, which is only across the space, we have

< Ψi|Ĥ|Ψ′ >= E′(t) < Ψi|Ψ′ >

since E′ is a constant in space. Writing |Ψ′ > in terms of different |Ψi > and changing the index in these
to j, the equation becomes

< Ψi|Ĥ

∑
j

cj |Ψj >

 = E′ < Ψi|

∑
j

cjΨj


7
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Since cj is simply a constant in space∑
j

cj < Ψi|Ĥ|Ψj >= E′
∑
j

cj < Ψi|Ψj >

Now, if we assume that the states Ψi are orthonormal, we have∑
j

< Ψi|Ĥ|Ψj > cj = E′ci (13)

we could write this equation for any i. Therefore, we would have a set of equations, one equation for each
state |Ψi >. The equations would always have E′ci on the right-hand side and a linear combination over
all ci on the left hand side (the sum over j runs over all i - only a dummy variable).
This relationship can be expressed in form of a matrix. To make this more obvious, we can set

Hij =< Ψi|Ĥ|Ψj >

Then the equation is ∑
j

Hijcj = E′ci

Hence

H~c = E′~c = ih̄
∂

∂t
~c (14)

where ~c is the column vector of coefficients ci and H is the matrix Hij =< Ψi|Ĥ|Ψj >. This means that
the vector of coefficients ~c is an eigenvector of matrix H.
We then see why we called state |Ψ′ > an eigenstate - all we need for its creation is vector ~c, which is an
eigenvector of H.
This formalims has great advantage, because H is all we need to find the eigenvectors, and it does not
depend on specific eigenstate we choose - we can always write down each element Hij =< Ψi|Ĥ|Ψj >
without knowledge of any of eigenstates Ψ′.
These eigenstates rotate each with period h

E , which can be than used to determine how the observable
states Ψi change - it is simply a matter of change of base and expression of Ψi using only different vectors
~c for different eigenstates.
This formalism is later on applied to some systems, although generally, it is a bit problematic, as it requires
that the matrix is finite. We can get around this if we assume that most of the infinite matrix elements are
almost zero, as will be done in almost free electron model later on. Now, however, we will continue with
more rigorous approaches, which do not require finite number of states.

1.6 Reality and Hermiticity

In order for the observable to be real, its expectation value needs to be real (all measurements yield real
numbers). Let Q̂ be an operator of a real observable, and Ψn be its eigenfunction. General state of the
system Ψ can be described as linear combination of eigenfunctions of Q̂ as Ψ =

∑
n cnΨn. The expectation

value is

< Q >=

∫
V

Ψ∗Q̂ΨdV =< Ψ|Q̂|Ψ >

Substituting in for Ψ in terms of the eigenfunctions of Q̂

< Q >=

∫
V

(∑
m

c∗mΨ∗m

)
Q̂

(∑
n

cnΨn

)
dV =

∑
m

∑
n

c∗mcn

∫
V

Ψ∗mQ̂ΨndV

Or, if we simply rename the indices

< Q >=
∑
p

∑
q

c∗pcq

∫
V

Ψ∗pQ̂ΨqdV

Taking the complex conjugate of the integral (assuming real space element dV ) for real < Q >

< Q >∗=< Q >=
∑
p

∑
q

cpc
∗
q

∫
V

Ψp(Q̂Ψq)
∗dV

8
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Now, we define complex conjugate of an operator as

Q̂∗Ψ∗ = (Q̂Ψ)∗ (15)

for any Ψ. This is further discussed in following subsection.
Using the complex conjugate of an operator and equating with original expression for < Q >

< Q >=
∑
p

∑
q

cpc
∗
q

∫
V

ΨpQ̂
∗Ψ∗qdV =

∑
m

∑
n

c∗mcn

∫
V

Ψ∗mQ̂ΨndV

This can be made equal only if terms with equal constants in front of integrals are equal. This means that
for some m and n on the right hand side, we choose a term with p = n and q = m, which has to be equal.
This means

cnc
∗
m

∫
V

ΨnQ̂
∗Ψ∗mdV = c∗mcn

∫
V

Ψ∗mQ̂ΨndV∫
V

Q̂∗Ψ∗mΨndV =

∫
V

Ψ∗mQ̂ΨndV

Or, equivalently ∫
V

(Q̂Ψm)∗ΨndV =

∫
Ψ∗mQ̂ΨndV

Operator that obeys this condition is called a Hermitian operator. In Dirac notation, the integral condition
can be simply written as

< Q̂Ψm|Ψn >=< Ψm|Q̂Ψn >=< Ψm|Q̂|Ψn > (16)

The integral condition can be also rewritten for general functions f and g, where f corresponds to Ψ∗m and
g to Ψn. ∫

V

fQ̂gdV =

∫
V

gQ̂∗fdV

To be complete, we should define what happens when an operator is not Hermitian, i. e. when

< Ψm|Q̂Ψn >6=< Q̂Ψm|Ψn >

In this case, we define a different operator Q̂†, which we call the Hermitian adjoint, by

< Ψm|Q̂Ψn >=< Q̂†Ψm|Ψn > (17)

For the special case of Hermitian operators, Q̂† = Q̂, i. e. the Hermitian adjoint of a Hermitian operator
is the operator itself. We then say that Hermitian operators are self-adjoint.
Further property can be derived from the definition. Consider case Ψm = Ψn. Then

< Ψn|Q̂Ψn >=< Q̂Ψn|Ψn >∫
V

Ψ∗nQ̂ΨndV =

∫
V

(Q̂Ψn)∗ΨndV

Since Ψn is an eigenfunction of Q̂ (by construction here)∫
V

Ψ∗nqnΨndV =

∫
V

(qnΨn)∗ΨndV

Since qn is only a constant, it can be taken out of the integrals.

qn

∫
V

Ψ∗nΨndV = q∗n

∫
V

Ψ∗nΨndV

The two sides can only be equal if q∗n = qn (for non-zero Ψn), which only occurs when qn is real. This
means that Hermitian operators have also real eigenvalues. Furthemore, if we take the general case of two
eigenstates of a Hermitian operator

< Q̂Ψm|Ψn >=< Ψm|Q̂Ψn >

< qmΨm|Ψn >=< Ψm|qnΨn >

9



PX262 - Quantum Mechanics & its Applications Formulae list and derivation

q∗m < Ψm|Ψn >= qn < Ψm|Ψn >

If the eigenvalues are non-degenerate (different for different m and n), the equation is valid only if <
Ψm|Ψn >= 0 form 6= n. This means that non-degenerate eigenstates of Hermitian operators are orthogonal.
Now, we show how we can create Hermitian operators from existing Hermitian operators. Trivially, we can
show that real (not complex !) constant c is Hermitian∫

V

fcgdV =

∫
V

gcfdV =

∫
V

gc∗fdV

Now consider Hermitian operator Q̂. Then operator P̂ = cQ̂ is also Hermitian, if c is a real (not complex!)
constant. ∫

V

f(cQ̂)gdV = c

∫
V

fQ̂gdV = c

∫
V

gQ̂∗fdV =

∫
V

g(cQ̂)∗fdV

If there are two operators which are Hermitian, P̂ and Q̂, their sum is also Hermitian∫
V

f(P̂ + Q̂)gdV =

∫
V

fP̂ gdV +

∫
V

fQ̂gdV =

∫
V

gP̂ ∗fdV +

∫
V

gQ̂∗fdV =

∫
V

g(P̂ ∗ + Q̂∗)fdV

However, the product of two Hermitian operators is not Hermitian∫
V

f(P̂ Q̂)gdV =

∫
V

fP̂ (Q̂g)dV =

∫
V

(Q̂g)P̂ ∗fdV =

∫
V

(P̂ ∗f)Q̂gdV =

=

∫
V

gQ̂∗P̂ ∗fdV 6=
∫
V

g(P̂ Q̂)∗fdV

as the change in the order of operators can generaly change the results. However, for two Hermitian
operators that can change order, their product is also Hermitian. But this is only very special case of
operators, but applies for example for squares of Hermitian operators.

1.6.1 Operator Complex Conjugate

it can be easily proven that complex conjugate of an operator distributes complex conjugation simply
algebraically, i. e.

((P̂ Q̂)f)∗ = (P̂ (Q̂f))∗ = P̂ ∗(Q̂f)∗ = P̂ ∗Q̂∗f∗

((P̂ + Q̂)f)∗ = (P̂ f)∗ + (Q̂f)∗ = P̂ ∗f∗ + Q̂∗f∗ = (P̂ ∗ + Q̂∗)f∗

Therefore any operator that is build up from algebraic multiplication and summation (therefore including
differential or integral operators) has complex conjugate that is simply algebraic complex conjugation.
For example, we search for complex conjugate of p̂x = −ih̄ ∂

∂x . Lets denote the complex conjugate operator
for now ŵx. By our definition

(p̂xf)∗ = ŵxf
∗

For brevity, consider that f is eigenfunction of p̂x, for example f = eikx with real k. Then

(p̂xf)∗ =

(
−ih̄ ∂

∂x
eikx

)∗
=
(
−ih̄(ik)eikx

)∗
= h̄ke−ikx = ŵxe

−ikx

To satisfy this equation, we can choose ŵx = ih̄ ∂
∂x , which is simply the algebraic complex conjugate of

p̂x. Therefore, finding operator complex conjugates can be done by simply taking their algebraic complex
conjugates.

1.7 Commutators

Above, we have used property of operators called associativity - it does not matter how we draw brackets
around our operators. Operators are also distributive with respect to addition, which we also used above.
However, operators are generally not commuting, which means that switching the order of operators changes
the resultant function, i.e.

P̂ Q̂Ψ 6= Q̂P̂Ψ

We then define new operator, that is composite operator of any pair of operators, called the commutator
operator, which for operators P̂ and Q̂ is

[P̂ , Q̂] = P̂ Q̂− Q̂P̂

10
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We know list a few properties of commutators. First is the anti-symmetry with respect to exchange of
operators P̂ and Q̂, i. e.

[Q̂, P̂ ] = Q̂P̂ − P̂ Q̂ = −(P̂ Q̂− Q̂P̂ ) = −[P̂ , Q̂]

Other is distribution with respect to addition

[P̂ + Q̂, R̂] = (P̂ + Q̂)R̂− R̂(P̂ + Q̂) = P̂ R̂+ Q̂R̂− R̂P̂ − R̂Q̂ = (P̂ R̂− R̂P̂ ) + (Q̂R̂− R̂Q̂) =

= [P̂ , R̂] + [Q̂, R̂]

And the last one is specific identity for product of operators

[P̂ , Q̂R̂] = P̂ Q̂R̂− Q̂R̂P̂ = P̂ Q̂R̂− Q̂P̂ R̂+ Q̂P̂ R̂− Q̂R̂P̂ = (P̂ Q̂− Q̂P̂ )R̂+ Q̂(P̂ R̂− R̂P̂ ) =

= [P̂ , Q̂]R̂+ Q̂[P̂ , R̂]

(notice the similarity to the tripple vector expansion, with exception of negative sign)
Now, for the importance of commutators in quantum dynamics. Lets start by considering operators for
which

[P̂ , Q̂] = 0

which means that we can exchange the order of operation. Consider an eigenfunction of Q̂, ΨQ. Then

P̂ Q̂ΨQ = Q̂P̂ΨQ

P̂ qΨQ = Q̂P̂ΨQ

Usually (for multiplicative, differential and integral operators), the constant eigenvalue q is not affected by
the operator. Then

qP̂ΨQ = Q̂P̂ΨQ

But, this is the eigenvalue equation for operator Q̂ operating on function P̂ΨQ. This means that P̂ΨQ is

an eigenfunction of Q̂. This can only happen if ΨQ is an eigenfunction of P̂ .

We can do similar argument for Q̂ΨP .

P̂ Q̂ΨP = Q̂P̂ΨP = pQ̂ΨP

hence Q̂ΨP is also eigenfunction of P̂ , which means that ΨP is also an eigenfunction of Q̂
The commuting operators therefore have a common set of eigenfunctions, and we say that the operators
are compatible.

1.8 Uncertainty Principle

Now, we come to a critical topic in quantum mechanics, the uncertainty principle. This principle is funda-
mental consequence of wave nature of the particles and limits the precision of definition of any two variables.
In extreme cases, one variable might be known with perfect precision, while the other has no well defined
value.
To discover the reasoning behind uncertainty principle, lets first define the uncertainty in certain observable.
We define it as a standard deviation of the value of the observable, which is classically defined as

σQ =
√
< Q2 > − < Q >2

So
σ2
Q =< Q2 > − < Q >2

Plugging in from our definitions for a general state Ψ

< Q2 >=

∫
V

Ψ∗Q̂2ΨdV

< Q >2=

(∫
V

Ψ∗Q̂ΨdV

)2

11
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Now, consider an operator (Q̂− < Q >)2. The expectation of this operator is (because < Q > is just a
constant)

< (Q̂− < Q >)2 >=

∫
V

Ψ∗(Q̂− < Q >)2ΨdV =

∫
V

Ψ∗(Q̂2 − 2 < Q > Q̂+ < Q >2)ΨdV =

∫
V

Ψ∗Q̂2ΨdV − 2 < Q >

∫
V

Ψ∗Q̂ΨdV+ < Q >2

∫
V

Ψ∗ΨdV

For normalized states, this becomes (using definition of expectation value)

< (Q̂− < Q >)2 >=< Q2 > −2 < Q >< Q > + < Q >2=< Q2 > − < Q >2= σ2
Q

Hence, we found something like an operator of variance/uncertainty - it is operator (Q̂− < Q >)2. I
say only something like because operating with this operator does not actually return the variance, rather
expectation of this operator is the variance of given variable.
Considering the rules for creation of Hermitian operators, this operator is a square of sum of Hermitian
operator Q̂ and real constant − < Q >, and therefore this operator itself is also Hermitian. This means
that we can express it, succintly in Dirac notation, as

< Ψ|(Q̂− < Q >)2Ψ >=< Ψ|(Q̂− < Q >)
[
(Q̂− < Q >)Ψ

]
>=< (Q̂− < Q >)Ψ|(Q̂− < Q >)Ψ >

Since (Q̂− < Q >)Ψ is generally a function, we can write it as function f for brevity, and the variance
then is

σ2
Q =< f |f >

For some other observable P that is being observed simultaneously with variable Q, the variance is

σ2
P =< (P̂− < P >)Ψ|(P̂− < P >)Ψ >

Or, in terms of succinct function g = (P̂− < P >)Ψ

σ2
P =< g|g >

Hence the product of variances of these two variables is

σ2
Qσ

2
P =< f |f >< g|g >

The last expression is the product of two inner products of elements of Hilbert space with themselves.
Using Cauchy-Schwarz inequality (8)

σ2
Qσ

2
P =< f |f >< g|g >≥ | < f |g > |2

σ2
Qσ

2
P ≥ | < (Q̂− < Q >)Ψ|(P̂− < P >)Ψ > |2 (18)

The expression inside the absolute value can be further simplified, since both Q̂− < Q > and P̂− < P >
are Hermitian

< (Q̂− < Q >)Ψ|(P̂− < P >)Ψ >=< Ψ|(Q̂− < Q >)(P̂− < P >)Ψ >=

=< Ψ|(Q̂P̂− < P > Q̂− < Q > P̂+ < Q >< P >)Ψ >=

=< Ψ|Q̂P̂Ψ > − < P >< Ψ|Q̂|Ψ > − < Q >< Ψ|P̂ |Ψ > + < Q >< P >

Using definition of expectation

< (Q̂− < Q >)Ψ|(P̂− < P >)Ψ >=< Ψ|Q̂P̂Ψ > − < P >< Q > − < Q >< P > + < Q >< P >=

=< Ψ|Q̂P̂Ψ > − < P >< Q >

We would end with the absolute value of this expression, but we can simplify it further if we try to express
the absolute value in terms of complex numbers and their conjugates. Generaly, < f |g > is a complex
number, for which

| < f |g > |2 = Re(< f |g >)2 + Im(< f |g >)2

12
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Because both Re(< f |g >) and Im(< f |g >) are real numbers, their squares are positive, and hence

| < f |g > |2 ≥ Im(< f |g >)2

Therefore, the original equation becomes

σ2
Qσ

2
P ≥ | < f |g > |2 ≥ Im(< f |g >)2

And therefore, taking the positive root, as standard deviations/uncertainties are positive.

σQσP ≥ |Im(< f |g >)|

For any complex number z, we have Im(z) = 1
2i (z − z

∗), therefore

Im(< f |g >) =
1

2i
(< f |g > − < f |g >∗)

The complex conjugate of the inner product is

< f |g >∗=
(∫

V

f∗gdV

)∗
=

∫
V

(f∗g)∗dV =

∫
V

g∗fdV =< g|f >

Therefore
< f |g > − < f |g >∗=< f |g > − < g|f >=

=< (Q̂− < Q >)Ψ|(P̂− < P > Ψ)− < (P̂− < P >)Ψ|(Q̂− < Q >)Ψ >=

< Ψ|(Q̂− < Q >)(P̂− < P >)Ψ > − < Ψ|(P̂− < P >)(Q̂− < Q >)Ψ >=

=< Ψ|(Q̂P̂− < Q > P̂− < P > Q̂+ < P >< Q >)Ψ >

− < Ψ|(P̂ Q̂− < Q > P̂− < P > Q̂+ < P >< Q >)Ψ >=

=< Ψ|Q̂P̂Ψ > − < Ψ|P̂ Q̂Ψ >=< Ψ|(Q̂P̂ − P̂ Q̂)Ψ >=< Ψ|[Q̂, P̂ ]Ψ >

We can show that the commutator of two Hermitian operators is in some sense anti-Hermitian, i. e.∫
V

Ψ∗[Q̂, P̂ ]ΨdV =

∫
V

Ψ∗(Q̂P̂ − P̂ Q̂)ΨdV =

∫
V

Ψ∗Q̂P̂ΨdV −
∫
V

Ψ∗P̂ Q̂ΨdV =

=

∫
V

Q̂∗Ψ∗P̂ΨdV −
∫
V

P̂ ∗Ψ∗Q̂ΨdV =

∫
V

P̂ ∗Q̂∗Ψ∗ΨdV −
∫
V

Q̂∗P̂ ∗Ψ∗ΨdV =

=

∫
V

(P̂ ∗Q̂∗ − Q̂∗P̂ ∗)Ψ∗ΨdV = −
∫
V

[Q̂, P̂ ]∗Ψ∗ΨdV

So, in Dirac notation, we have
< Ψ|[Q̂, P̂ ]Ψ >= − < [Q̂, P̂ ]Ψ|Ψ >

But, in absolute values
| < Ψ|[Q̂, P̂ ]Ψ > | = | < [Q̂, P̂ ]Ψ|Ψ > |

Therefore, we can label this state as | < [Q̂, P̂ ] > |, in analogy with expectation values. Furthemore, since
[Q̂, P̂ ] = −[P̂ , Q̂], also

< [Q̂, P̂ ] >= | < Ψ|[Q̂, P̂ ]Ψ > | = | < Ψ|[P̂ , Q̂]Ψ > | =< [P̂ , Q̂] >

Therefore, plugging all together (since absolute value distributes for products)

|Im(< f |g >)| =
∣∣∣∣ 1

2i
(< f |g > − < g|f >)

∣∣∣∣ =

∣∣∣∣ 1

2i

∣∣∣∣ | < f |g > − < g|f > | =
∣∣∣∣ 1

2i
< [Q̂, P̂ ] >

∣∣∣∣
And thus

σQσP ≥
∣∣∣∣ 1

2i
< [Q̂, P̂ ] >

∣∣∣∣ (19)

which is a general uncertainty principle.
In an example, consider a momentum operator p̂x and position operator x̂. The commutator is (with
explicitly written function)

[p̂x, x̂]f = −ih̄ ∂

∂x
xf − x

(
−ih̄ ∂

∂x

)
f = −ih̄f − ih̄x∂f

∂x
+ ih̄x

∂f

∂x
= −ih̄f

[p̂x, x̂] = −ih̄
Hence

σpxσx ≥ |
1

2i
(−ih̄)| = h̄

2
(20)

which is classical Heisenberg uncertainty principle.
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1.9 Time Dependence of Expectation Values

Last topic in very general QM discovered here is the time dependence of expectation values for stationary
states (states that are solutions to TISE). The time dependence of the expectation, if there is any, depends
on the derivative with respect to time. From definition of expectation value

d < Q >

dt
=

d

dt

∫
V

Ψ∗Q̂ΨdV =

∫
V

dΨ∗

dt
Q̂ΨdV +

∫
V

Ψ∗
dQ̂Ψ

dt
dV

The only time dependence that can be added by the operator to Ψ is if the operator itself is explicitly time
dependent (function of t). If the operator is time dependent only explicitly, the total derivative is equal to
the partial derivative, so

dQ̂

dt
=
∂Q̂

∂t

Since Ψ is stationary state solution, Ψ = ψ(~r)ρ(t) and hence

dΨ

dt
= ψ(~r)

dρ

dt
= ψ(~r)

∂ρ

∂t
=
∂Ψ

∂t

Similarly for the complex conjugate,
dΨ

dt
=
∂Ψ

∂t

Hence the time dependence of expectation value becomes

d < Q >

dt
=

∫
V

∂Ψ∗

∂t
Q̂ΨdV +

∫
V

Ψ∗
∂Q̂

∂t
ΨdV +

∫
V

Ψ∗Q̂
∂Ψ

∂t
dV

TDSE is

ĤΨ = ih̄
∂Ψ

∂t

∂Ψ

∂t
= − i

h̄
ĤΨ

And
∂Ψ∗

∂t
=
i

h̄
Ĥ∗Ψ∗

Hence we have

d < Q >

dt
=

∫
V

i

h̄
Ĥ∗Ψ∗Q̂ΨdV +

∫
V

Ψ∗
∂Q̂

∂t
ΨdV +

∫
V

Ψ∗Q̂

(
− i
h̄
ĤΨ

)
dV =

〈
∂Q̂

∂t

〉
+
i

h̄

(∫
V

Ĥ∗Ψ∗Q̂ΨdV −
∫
V

Ψ∗Q̂ĤΨdV

)
Since Ĥ is hermitian (total energy is always real)

d < Q >

dt
=

〈
∂Q̂

∂t

〉
+
i

h̄

(∫
V

Ψ∗ĤQ̂ΨdV −
∫
V

Ψ∗Q̂ĤΨdV

)
=

〈
∂Q̂

∂t

〉
+
i

h̄
< Ψ|[Ĥ, Q̂]Ψ >

Therefore, if there is no explicit time dependence in the operator of an observable, the expectation value
of the observable only changes in time if the observable does not commute with the Hamiltonian operator
of the system, and the change is proportional to the expectation of the commutator of Ĥ and Q̂.

2 Formal Applications of Quantum Mechanics

In this section, some more formal applications of quantum mechanical formalism will be presented. These
try to stick to principles of quantum mechanics as closely as possible. First is a discussion of a general
system that can exist in only two observable states.

14
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2.1 Two State System

Let Ψ1 and Ψ2 be the observable states of the system. These are linear combinations of the eigenstates of
the hamiltonian operator Ĥ. Let Φ1 and Φ2 be these energy eigenstates. There are only two since we have
to be able to also express these in terms of linear combination ofthe observable states, which there is only
two of and therefore can only form two other linearly independent states. Now, lets represent the states as
vectors with components of vectors equal to the coefficient in linear superposition of observable eigenstates
that creates the state, i.e. for general state Ψ

Ψ = c1Ψ1 + c2Ψ2 =

(
c1
c2

)
The general states than obeys Schrödinger equation as discussed before

ih̄
∂

∂t

(
c1
c2

)
=

(
< Ψ1|Ĥ|Ψ1 > < Ψ1|Ĥ|Ψ2 >

< Ψ2|Ĥ|Ψ1 > < Ψ2|Ĥ|Ψ2 >

)(
c1
c2

)
= H

(
c1
c2

)
Let

Φ1 =

(
p1

p2

)
where p1 and p2 are such that Φ1 is always eigenvector of H, which usually means these are constant in
time (if Hamiltonian is not explicitly dependent on time).
Analogously for Φ2

Φ2 =

(
q1

q2

)
For non-degenerate matrix H, we can express the general state vector in terms of the eigenvectors as

Ψ =

(
c1
c2

)
= k1

(
p1

p2

)
+ k2

(
q1

q2

)
where we allow for time dependence of the k coefficients, which enables the state vector to change. The
Schrödinger equation then is

ih̄
∂

∂t
~c = H(k1Φ1 + k2Φ2)

ih̄
∂

∂t
(k1Φ1 + k2Φ2) = k1φ1Φ1 + k2φ2Φ2

where φ1/2 are the eigenvalues of Φ1/2.
This is another effectively vector equation (for constant energy eigenstates), but we need to change the
basis to the basis of eigenvectors of energy Φ1 and Φ2. This equation than is

ih̄
∂

∂t

(
k1(t)
k2(t)

)
=

(
φ1k1(t)
φ2k2(t)

)
Since ks only depend on time, the equation is equivalent with(

dk1

dt
dk2

dt

)
=

( −i
h̄ φ1k1
−i
h̄ φ2k2

)
This has solution (

k1

k2

)
=

(
k10e

−iφ1
h̄ t

k20e
−iφ2

h̄ t

)
where k10 and k20 are some constant amplitudes. This means that for real eigenvalues of energy, each
components rotates in complex plane, each with different velocity. This than causes the general state to
change as (in the original basis of observable states Ψ1 and Ψ2)

Ψ = k10e
−iφ1

h̄ t (p1Ψ1 + p2Ψ2) + k20e
−iφ2

h̄t (q1Ψ1 + q2Ψ2) =

=
(
k10e

−iφ1
h̄ tp1 + k20e

−iφ2
h̄ tq1

)
Ψ1 +

(
k10e

−iφ1
h̄ tp2 + k20e

−iφ2
h̄ tq2

)
Ψ2 = aΨ1 + bΨ2
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In order for this general state to be normalized, assuming that the observable states are orthonormal ( and
as they have to be orthogonal, this it is effectively only requirement for them to be normalized)

< Ψ|Ψ >= 1

< aΨ1 + bΨ2|aΨ1 + bΨ2 >= a∗a < Ψ1|Ψ1 > +a∗b < Ψ1|Ψ2 > +ab∗ < Ψ2|Ψ1 > +bb∗ < Ψ2|Ψ2 >= 1

|a|2 + |b|2 = 1

|k10|2(|p1|2 + |p2|2) + k10k
∗
20(p1q

∗
1 + p2q

∗
2)ei

φ2−φ1
h̄ t + k∗10k20(p∗1q1 + p∗2q2)ei

φ1−φ2
h̄ t + |k20|2(|q1|2 + |q2|2) = 1

This is quite a complicated expression. It can be slightly simplified by noticing that the inner two expressions
are complex conjugates, and therefore it becomes

|k10|2(|p1|2 + |p2|2) + |k20|2(|q1|2 + |q2|2) + 2Re
(
k10k

∗
20(p1q

∗
1 + p2q

∗
2)ei

φ2−φ1
h̄ t

)
= 1

Often, we are interested in a case when the state is at some time t = 0 prepared in one of the observable
states. For example, say that the state is prepared in a state Ψ1. Then, we have

Ψ(t = 0) = (k10p1 + k20q1)Ψ1 + (k10p2 + k20q2)Ψ2 = Ψ1

Which requires
k10p1 = 1− k20q1

and
k10p2 = −k20q2

This is a set of simultaneous equations. From the second one

k10 = − q2

p2
k20

Hence, by substituting into the first one

− q2

p2
p1k20 = 1− q1k20(

q1 −
p1

p2
q2

)
k20 = 1

k20 =
p2

q1p2 − p1q2

And consequently

k10 =
−q2

q1p2 − p1q2

These equations can be then used to express the state using just eigenvalues of energies and the components
of the eigenvectors. Now, a few examples of this formalism follow, but they are preceded by mathematical
intermezzo on finding eigenvalues and eigenvectors.

2.1.1 Matrix Eigenvalues and Eigenvectors

Let A be a matrix and ~c an eigenvector of the matrix. Then

A~c = λ~c

where scalar λ is the eigenvalue corresponding to ~c. This means that

A~c− λc = ~0

where ~0 is the zero vector.
A~c− λI~c = ~0

where I is the identity matrix. Then
(A− λI)~c = ~0

If we do not want ~c trivial (~0), then we must have determinant of the matrix A− λI equal to zero

|A− λI| = 0

This is the main equation with which to search for eigenvectors. However, there exists a few tricks how to
make searching slightly easier.

16
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( Adding identity matrix)
Assume we know some eigenvector ~c of matrix A. We now have a different matrix B, which is B = A+ bI,
where b is some constant, and we want to know its eigenvalues and eigenvectors, ~d. For these

B~d = φ~d

where φ is the eigenvalue of B. This means

(B− φI)~d = 0

and, substituting from definition of B
(A + bI− φI)~d = 0

(A− (φ− b)I)~d = 0

But, this is an equation for eigenvalue of A, so the eigenvectors of B are the same as eigenvectors of A,
and the eigenvalues are

λ = φ− b

φ = λ+ b

So, the eigenvalues of B are increased by b.

2.1.2 Amonia Molecule

The amonia molecule can exist in two energically equivalent states, however, switching between these states
can occur if the states overcome some potential barrier.
We state that the two states of amonia molecule are not the eigenstates of the hamiltonian operator, and
we state that the hamiltonian matrix is

H =

(
ε0 V
V ε0

)
The eigenvectors will be the same as for matrix

H′ =

(
0 V
V 0

)
Finding eigenvalues of H′ (not of H) ∣∣∣∣ −λ′ V

V −λ′
∣∣∣∣ = 0

(λ′)2 − V 2 = 0

λ′ = ±V

Which means that eigenvalues of H are
λ = ε0 ± V

Finding the eigenvectors of H′ (which are the same as of H)(
∓V V
V ∓V

)(
a
b

)
=

(
0
0

)
This is a system of two simultaneous equations

bV ∓ aV = 0

aV ∓ bV = 0

From the first equation
b = ±a

So the two eigenvectors are

~p =

(
1
1

)
, ~q =

(
1
−1

)
with corresponding eigenvalues

φ1 = ε0 + V, φ2 = ε0 − V

17
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We will now search for time in which the molecule transitions from one measurable state to the other state.
At time t = 0, the molecule starts in state 1.
Looking now back to our previous formalism, the mixing coefficients k10 and k20 are

k10 =
−q2

q1p2 − p1q2
=
−(−1)

1− (−1)
=

1

2

k20 =
p2

q1p2 − p1q2
=

1

2

So, the general state of the system is given as

Ψ = k10e
−iφ1

h̄ t~p+ k20e
−iφ2

h̄ t~q =
1

2

(
e−i

φ1
h̄ t

(
1
1

)
+ e−i

φ2
h̄ t

(
1
−1

))
=

=
1

2

((
e−i

(ε0+V )
h̄ t + e−i

(ε0−V )
h̄ t

)(
1
0

)
+
(
e−i

(ε0+V )
h̄ t − e−i

(ε0−V )
h̄ t

)(
0
1

))
=

=
1

2

(
e−i

ε0
h̄ t
(
e−i

V
h̄ t + ei

V
h̄ t
)

Ψ1 + e−i
ε0
h̄ t
(
e−i

V
h̄ t − eiVh̄ t

)
Ψ2

)
=

= e−i
ε0
h̄ t

(
cos

(
V

h̄
t

)
Ψ1 − i sin

(
V

h̄
t

)
Ψ2

)
This means that at time t = h̄

V
π
2 , the general state does not include any part of the initial state Ψ1, and t

is the transition time.

2.2 Fermions and Bosons and Exchange symmetry

For systems with more than one particle, we can still assign one wavefunction to the whole system, which
than represents the properties of the whole system (in a similar way as we can write a hamiltonian for a
whole system).
Consider that we now have two identical particles. The wavefunction than depends on position of these
two particles, and time. So

Ψ = Ψ(~r1, ~r2, t)

Lets define exchange operator P̂ which switches the first particle with the second particle, i. e. does
transformation

P̂Ψ(~r1, ~r2, t) = Ψ(~r2, ~r1, t)

Because the particles are indistinguishable, the probability density profile must not change after the oper-
ation. This means that

|Ψ(~r1, ~r2, t)|2 = |Ψ(~r2, ~r1, t)|2

This leaves us with two possibilities. Either

Ψ(~r1, ~r2, t) = −Ψ(~r2, ~r1, t)

Or
Ψ(~r1, ~r2, t) = Ψ(~r2, ~r1, t)

This effectively means that P̂ has eigenvalues ±1. Now, consider that two particles are exchange antisym-
metric and have the same position ~r. Then

P̂Ψ(~r1 = ~r, ~r2 = ~r, t) = Ψ(~r2 = ~r, ~r1 = ~r, t)

−Ψ(~r, ~r, t) = Ψ(~r, ~r, t)

This means that Ψ = 0, or that the probability of observing the two particles at the same position is
zero. This can be further extanded to any variable that defines the state of the particle, which means that
particles which are exchange anti-symmetric cannot exist in the same state simultaneously. For example,
if the state of the particle is defined by four quantum numbers as |n, l,ml, s >, then

Ψ = |n1, l1,ml1, s1, n2, l2,ml2, s2 >

P̂nΨ = |n2, l1,ml1, s1, n1, l2,ml2, s2 >= −Ψ = −|n1, l1,ml1, s1, n2, l2,ml2, s2 >

For n1 = n2, we again have Ψ = 0, and we could define respective operators for each of quantum numbers.
Such particles that cannot exist in common state are called fermions.
For the exchange symmetric particles, there is no such obstruction. These particles are called bosons.
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2.3 Harmonic Oscillator

Harmonic oscillator is a system of particles that has a parabolic potential. It is generally important because
any local minimum in any complicated potential landscape can be modelled for small excitations as parabolic
potential.
This can be easily seen by applying Taylor series in 1D. Let V (x) be the potential function, and let x0

be the position of a local minimum in V and dx small step from the minimum position. The value of the
potential at x0 + dx is

V (x0 + dx) = V (x0) +
dV

dx
|x0

(x− x0) +
1

2

d2V

dx2
|x0

(x− x0)2

Since the position is minimum, dVdx |x0 = 0. By also changing the origin so that x0 is at the origin, we have

V (dx) = V (0) +
1

2

d2V

dx2
|0x2

which is a parabolic potential. Usually, we mark constant derivative term as k = d2V
dx2 and choose the

potential level such that V (0) = 0.
The Hamiltonian operator for harmonic oscillator is then (in 1D)

Ĥ = − h̄2

2m

∂2

∂x2
+

1

2
kx2

2.3.1 Ladder Operators

We can try to factorize the hamiltonian operator as

1

2m

(√
kmx+ h̄

∂

∂x

)(√
kmx− h̄ ∂

∂x

)
=

1

2m

(
kmx2 −

√
kmx

∂

∂x
+ h̄

∂

∂x
(
√
kmx)− h̄2 ∂

2

∂x2

)
=

=
1

2m

(
kmx2 + h̄

√
km− h̄2 ∂

2

∂x2

)
=

1

2
kx2 − h̄2 ∂

2

∂x2
+

1

2
h̄

√
k

m
= Ĥ +

1

2
h̄ω0

where ω0 =
√

k
m is the classical natural frequency of the harmonic oscillator. Similarly, we could factorize

as

1

2m

(√
kmx− h̄ ∂

∂x

)(√
kmx+ h̄

∂

∂x

)
=

1

2m

(
kmx2 − h̄2 ∂

2

∂x2
+
√
kmxh̄

∂

∂x
− h̄ ∂

∂x

√
kmx

)
= Ĥ − 1

2
h̄ω0

Labeling (for reasons that will become clear later)

a+ =
1√
2m

(√
kmx− h̄ ∂

∂x

)
(21)

a− =
1√
2m

(√
kmx+ h̄

∂

∂x

)
(22)

We can rewrite the hamiltonian operator as

Ĥ = a−a+ −
1

2
h̄ω0 = a+a− +

1

2
h̄ω0 (23)

Besides other applications, we can directly determine the commutator [a−, a+]

[a−, a+] = a−a+ − a+a− = h̄ω0

Now, consider that we have some eigenstate of hamiltonian operator Ψn. For stationary state, TISE is

ĤΨn = EnΨn(
a−a+ −

1

2
h̄ω0

)
Ψn = EnΨn
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Operating with a+ on both sides of the equation(
a+a−a+ −

1

2
h̄ω0a+

)
Ψn = Ena+Ψn

Labeling Ψn+1 = a+Ψn, we have (
a+a− −

1

2
h̄ω0

)
Ψn+1 = EnΨn+1

(
a+a− + h̄ω0 −

1

2
h̄ω

)
Ψn+1 = (En + h̄ω0)Ψn+1(

a+a− +
1

2
h̄ω0

)
Ψn+1 = (En + h̄ω0)Ψn+1

ĤΨn+1 = (En + h̄ω0)Ψn+1

Hence, Ψn+1 is also an eigenfunction of the hamiltonian operator, with eigenvalue increased by h̄ω0.
Similarly, we could start from

ĤΨn = EnΨn(
a+a− +

1

2
h̄ω0

)
Ψn = EnΨn

Now apply a− to both sides (
a−a+a− +

1

2
h̄ω0a−

)
Ψn = Ena−Ψn

Setting Ψn−1 = a−Ψn (
a−a+ +

1

2
h̄ω0 − h̄ω

)
Ψn−1 = (En − h̄ω0)Ψn−1

ĤΨn−1 = (En − h̄ω0)Ψn−1

Which means that Ψn−1 is also eigenfunction of the hamiltonian operator.
But, there is a minimal energy eigenvalue that physically makes sense, that is for kinetic energy equal to
zero and potential energy equal to minimum V (0) = 0. So the total energy must be always greater then
zero. This means that when applying a− to some function Ψ0 which has energy eigenvalue smaller than
h̄ω0, we should not get a physical result, as well as for any other consecutive application of a−. A way to
ensure this is to set

a−Ψ0 = 0 (24)

1√
2m

(√
kmx+ h̄

∂

∂x

)
Ψ0 = 0

For Ψ0 only in 1D, this becomes differential equation

dΨ0

dx
= −
√
km

h̄
xΨ0

Which has solution
Ψ0 = Ae−

√
km
2h̄ x2

= Ae−
mω0
2h̄ x2

where A is some normalization constant.
Therefore, we have effectively found all eigenfunctions of the hamiltonian operator. Other functions can be
simply found by operating with a+ operator on the Ψ0 function. To find all the eigenvalues, we need to find
the energy eigenvalue E0 of the eigenfunction Ψ0. This can be also found from our ”boundary condition”

a−Ψ0 = 0

a+a−Ψ0 = 0(
a+a− +

1

2
h̄ω0

)
Ψ0 =

1

2
h̄ω0Ψ0

ĤΨ0 =
1

2
h̄ω0Ψ0 = E0Ψ0
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which means that E0 = 1
2 h̄ω0 and En = nh̄ω + 1

2 h̄ω = h̄ω
(
n+ 1

2

)
.

The general formula for the eigenfunction can be derived as

Ψn = CnHn

(√
mω0

h̄
x

)
e−

mω0
2h̄ x2

where Cn is the normalisation constant and Hn(x) are the Hermite polynomials.
The important message to take is that the energy of the Harmonic oscillator is never truly zero - the
minimum value is 1

2 h̄ω0. Also, since Gaussian function e−αx
2

has finite value for any point x, the particle
has non-zero probability of existing in places where it would be otherwise classicaly forbidden, i. e. at
places where the potential energy of the particle is greater than its total energy in the minimum.

2.3.2 Molecular Oscillations

We can model the molecular vibrations as harmonic oscillators with reduced mass µ instead of mass m, for
which

µ =
m1m2

m1 +m2

we can see that this mass reduces to m2 for m1 >> m2, as in such case only the second molecule oscillates
(the second does not move).
The ”spring constant” k for such oscillators is usually very high (about 103 N m−1). When photons of
frequency that is equal to an integer multiple of natural frequency of the oscillator are incident on these
oscillators/molecules, they can get absorbed and the energy of the oscillator increases by given nh̄ω0. This
can be used in some spectroscopy experiments.

2.4 Angular Momentum Operators

We defined angular momentum operators in cartesian coordinates as

L̂x = yp̂z − zp̂y

L̂y = zp̂x − xp̂z

L̂z = xp̂y − yp̂x
We now further define a angular momentum magnitude operator, which we define, by principle of corre-
spondence, as

L̂2 = L̂2
x + L̂2

y + L̂2
z

where L̂2 should be really (̂L2), as L2 is the name of the observable we are relating to this operator.

2.4.1 Self Commutation

We will now be interested whether we can now all components of angular momentum at the same time.
We know that for linear momentum operators, this is possible as

[p̂x, p̂y] = [p̂x, p̂z] = [p̂y, p̂z] = 0

We also know that

[x, p̂x] = x(−ih̄)
∂

∂x
− (−ih̄)

∂

∂x
x = (−ih̄)

(
x
∂

∂x
− 1− x ∂

∂x

)
= ih̄

and similarly [y, p̂y] = ih̄ and [z, p̂z] = ih̄.
We now calculate the commutators of the angular momentum components. Using the relations stated
before

[L̂x, L̂y] = [yp̂z − zp̂y, zp̂x − xp̂z] = [yp̂z, zp̂x − xp̂z]− [zp̂y, zp̂x − xp̂z] =

= [zp̂x − xp̂z, zp̂y]− [zp̂x − xp̂z, yp̂z] = [zp̂x, zp̂y]− [xp̂z, zp̂y]− [zp̂x, yp̂z] + [xp̂z, yp̂z]

Taking these components separately

[zp̂x, zp̂y] = [zp̂x, z]p̂y + z[zp̂x, p̂y] = −[z, zp̂x]p̂y − z[p̂y, zp̂x] =

= −[z, z]p̂xp̂y − z[z, p̂x]p̂y − z[p̂y, z]p̂x − z2[p̂y, p̂x]
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Now, let x = x1, y = x2, z = x3. For any two components xi, xj ; i, j ∈ {1, 2, 3} [xi, xj ] = 0 since this is only
a multiplication, which always commutes. Also, for any i 6= j; i, j ∈ {1, 2, 3}

[xi, pxj ] = xi(−ih̄)
∂

∂xj
− (−ih̄)

∂

∂xj
xi = 0

as xi is effectively a constant to differentiation with respect to xj .
Therefore

[zp̂x, zp̂y] = 0

Second term is
−[xp̂z, zp̂y] = −[xp̂z, z]p̂y − z[xp̂z, p̂y] = [z, xp̂z]p̂y + z[p̂y, xp̂z] =

= [z, x]p̂z p̂y + x[z, p̂z]p̂y + zx[p̂y, p̂z] + z[p̂y, x]p̂z = ih̄xp̂y

Third term is
−[zp̂x, yp̂z] = −[zp̂x, y]p̂z − y[zp̂x, p̂z] = [y, zp̂x]p̂z + y[p̂z, zp̂x] =

= [y, z]p̂xp̂z + z[y, p̂x]p̂z + y[p̂z, z]p̂x + yz[p̂z, p̂x] = −y[z, p̂z]p̂x = −ih̄yp̂x
And the last term is

[xp̂z, yp̂z] = [xp̂z, y]p̂z + y[xp̂z, p̂z] = −[y, xp̂z]p̂z − y[p̂z, xp̂z] =

= −[y, x]p̂z p̂z − x[y, p̂z]p̂z − y[p̂z, x]p̂z − yx[p̂z, p̂z] = 0

And therefore
[L̂x, L̂y] = 0 + ih̄xp̂y − ih̄yp̂x + 0 = ih̄L̂z

Similarly for other commutators

[L̂y, L̂z] = [zp̂x − xp̂z, xp̂y − yp̂x] = [zp̂x, xp̂y − yp̂x]− [xp̂z, xp̂y − yp̂x] =

= [xp̂y − yp̂x, xp̂z]− [xp̂y − yp̂x, zp̂x] = [xp̂y, xp̂z]− [yp̂x, xp̂z]− [xp̂y, zp̂x] + [yp̂x, zp̂x]

Again, by components

[xp̂y, xp̂z] = [xp̂y, x]p̂z + x[xp̂y, p̂z] = −[x, x]p̂yp̂z − x[x, p̂y]p̂z − x[p̂z, x]p̂y − x2[p̂z, p̂y] = 0

−[yp̂x, xp̂z] = −[yp̂x, x]p̂z − x[yp̂x, p̂z] = [x, y]p̂xp̂z + y[x, p̂x]p̂z + x[p̂z, y]p̂x + xy[p̂z, p̂x] = ih̄yp̂z

−[xp̂y, zp̂x] = −[xp̂y, z]p̂x − z[xp̂y, p̂x] = [z, x]p̂yp̂x + x[z, p̂y]p̂x + z[p̂x, x]p̂y + zx[p̂x, p̂z] = −ih̄zp̂y
[yp̂x, zp̂x] = [yp̂x, z]p̂x + z[yp̂x, p̂x] = −[z, y]p̂2

x − y[z, p̂x]p̂x − z[p̂x, y]p̂x − zy[p̂x, p̂x] = 0

Hence
[L̂y, L̂z] = ih̄L̂x

Finally
[L̂z, L̂x] = [xp̂y − yp̂x, yp̂z − zp̂y] = [xp̂y, yp̂z − zp̂y]− [yp̂x, yp̂z − zp̂y] =

= [yp̂z − zp̂y, yp̂x]− [yp̂z − zp̂y, xp̂y] = [yp̂z, yp̂x]− [zp̂y, yp̂x]− [yp̂z, xp̂y] + [zp̂y, xp̂y]

So
[yp̂z, yp̂x] = [yp̂z, y]p̂x + y[yp̂z, p̂x] = −[y, y]p̂z p̂x − y[y, p̂z]p̂x − y[p̂x, y]p̂z − y2[p̂x, p̂z] = 0

−[zp̂y, yp̂x] = −[zp̂y, y]p̂x − y[zp̂y, p̂x] = [y, z]p̂yp̂x + z[y, p̂y]p̂x + y[p̂x, z]p̂y + yz[p̂x, p̂y] = ih̄zp̂x

−[yp̂z, xp̂y] = −[yp̂z, x]p̂y − x[yp̂z, p̂y] = [x, y]p̂z p̂y + y[x, p̂z]p̂y + x[p̂y, y]p̂z + xy[p̂y, p̂z] = −ih̄xp̂z
[zp̂y, xp̂y] = [zp̂y, x]p̂y + x[zp̂y, p̂y] = −[x, z]p̂2

y − z[x, p̂y]p̂y − x[p̂y, z]p̂y − xz[p̂y, p̂y] = 0

So
[L̂z, L̂x] = ih̄L̂y

Summarizing, the commutators are cyclic as follows

[L̂x, L̂y] = ih̄Lz (25)

[L̂y, L̂z] = ih̄Lx (26)

[L̂z, L̂x] = ih̄Ly (27)
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Therefore, we are not able to know any two components of the angular momentum at the same time.
But what about the magnitude of the angular momentum. Again, we need to find commutators of the
magnitude operator L̂2 with operator for each component of angular momentum. Starting with x

[L̂2, L̂x] = [L̂2
x + L̂2

y + L̂2
z, L̂x] = [L̂2

x, L̂x] + [L̂2
y, L̂x] + [L̂2

z, L̂x]

Commutator of any operator with the power of the same operator is always zero, as the operators in the
operator sequence are identical and swapping them does not change the form of the operator sequence. By
operator sequence I mean the product of the two operators in the commutator.
Therefore [L̂2

x, L̂x] = 0.
Then

[L̂2, L̂x] = [L̂2
y, L̂x] + [L̂2

z, L̂x] = −[L̂x, L̂y]L̂y − L̂y[L̂x, L̂y]− [L̂x, L̂z]L̂z − L̂z[L̂x, L̂z] =

= −ih̄L̂zL̂y − ih̄L̂yL̂z + ih̄L̂yL̂z + ih̄L̂zL̂y = 0

Similarly

[L̂2, L̂y] = −[L̂y, L̂
2
x]− [L̂y, L̂

2
y]− [L̂y, L̂

2
z] = −[L̂y, L̂x]L̂x − L̂x[L̂y, L̂x]− [L̂y, L̂z]L̂z − L̂z[L̂y, L̂z] =

= ih̄L̂zL̂x + ih̄L̂xL̂z − ih̄LxL̂z − ih̄L̂zL̂x = 0

[L̂2, L̂z] = −[L̂z, L̂
2
x]− [L̂z, L̂

2
y] = −[L̂z, L̂x]L̂x − L̂x[L̂z, L̂x]− [L̂z, L̂y]L̂y − L̂y[L̂z, L̂y] =

= −ih̄L̂yL̂x − ih̄L̂xL̂y + ih̄L̂xL̂y + ih̄L̂yL̂x = 0

This means that we can know both one component of the angular momentum and its magnitude at the same
time. It also means that L̂2 and L̂x (or any other single component) are compatible operators, meaning
that they share a common set of eigenfunctions. These eigenfunctions are called the spherical harmonics,
and they are discovered later in their own subsection.

2.4.2 Angular Momentum in Spherical Polar Coordinates

We can change the coordinate system to find cartesian components of the angular momentum in terms of
derivatives and multiples of spherical coordinates. This is especially useful if we have a wavefunction given
in spherical coordinates.
The spherical polar coordinate system is given by a following series of transforms

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

and inverse transforms
r =

√
x2 + y2 + z2

θ = cos−1

(
z√

x2 + y2 + z2

)

φ = tan−1
(y
x

)
Now, we need to transform the momentum operators. Starting with L̂x

L̂x = yp̂z − zp̂y = (−ih̄)

(
y
∂

∂z
− z ∂

∂y

)
Here

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ

∂r

∂z
=
z

r
= cos θ

∂θ

∂z
= − 1√

1− z2

r2

(
r − z zr
r2

)
=

z2 − r2

r3

√
1− z2

r2

=
−(1− cos2 θ)

r
√

1− cos2 θ
=
− sin θ

r
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∂φ

∂z
= 0

Also
∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ

∂r

∂y
=
y

r
= sin θ sinφ

∂θ

∂y
= − 1√

1− z2

r2

−z
r2

y

r
=

cos θ sinφ

r

∂φ

∂y
=

1

1 + y2

x2

1

x
=

x

y2 + x2
=

r sin θ cosφ

r2 sin2 θ(sin2 φ+ cos2 φ)
=

cosφ

r sin θ

So, putting the first term together

y
∂

∂z
= r sin θ sinφ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= r sin θ cos θ sinφ

∂

∂r
− sin2 θ sinφ

∂

∂θ

And the second term together

−z ∂
∂y

= −r cos θ

(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
=

= −r sin θ cos θ sinφ
∂

∂r
− cos2 θ sinφ

∂

∂θ
− cos θ cosφ

sin θ

∂

∂φ

Putting these two together

y
∂

∂z
− z ∂

∂y
= − sinφ(sin2 θ + cos2 θ)

∂

∂θ
− cos θ cosφ

sin θ

∂

∂φ
= − sinφ

∂

∂θ
− cos θ cosφ

sin θ

∂

∂φ

Hence

L̂x = (−ih̄)

(
y
∂

∂z
− z ∂

∂y

)
= ih̄ sinφ

∂

∂θ
+ ih̄ cot θ cosφ

∂

∂φ

Similarly for L̂y

L̂y = (−ih̄)

(
z
∂

∂x
− x ∂

∂z

)
∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

∂r

∂x
=
x

r
= sin θ cosφ

∂θ

∂x
= − 1√

1− cos2 θ

z

r2

−x
r

=
cos θ cosφ

r

∂φ

∂x
=

1

1 + y2

x2

−y
x2

= − r sin θ sinφ

r2 sin2 θ(cos2 φ+ sin2 φ)
= − sinφ

r sin θ

z
∂

∂x
= r cos θ

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
=

= r sin θ cos θ cosφ
∂

∂r
+ cos2 θ cosφ

∂

∂θ
− cos θ sinφ

sin θ

∂

∂φ

−x ∂
∂z

= −r sin θ cosφ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
= −r sin θ cos θ cosφ

∂

∂r
+ sin2 θ cosφ

∂

∂θ

z
∂

∂x
− x ∂

∂z
= cosφ

∂

∂θ
− cos θ sinφ

sin θ

∂

∂φ

L̂y = (−ih̄)

(
z
∂

∂x
− x ∂

∂z

)
= −ih̄ cosφ

∂

∂θ
+ ih̄ cot θ sinφ

∂

∂φ
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Finally, for L̂z

L̂z = (−ih̄)

(
x
∂

∂y
− y ∂

∂x

)
x
∂

∂y
= r sin θ cosφ

(
sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
=

= r sin2 θ sinφ cosφ
∂

∂r
+ sin θ cos θ sinφ cosφ

∂

∂θ
+ cos2 φ

∂

∂φ

−y ∂
∂x

= −r sin θ sinφ

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
=

= −r sin2 θ sinφ cosφ
∂

∂r
− sin θ cos θ sinφ cosφ

∂

∂θ
+ sin2 φ

∂

∂φ

Hence

x
∂

∂y
− y ∂

∂x
= (cos2 φ+ sin2 φ)

∂

∂φ
=

∂

∂φ

And

L̂z = (−ih̄)

(
x
∂

∂y
− y ∂

∂x

)
= −ih̄ ∂

∂φ

In summary

L̂x = ih̄ sinφ
∂

∂θ
+ ih̄ cot θ cosφ

∂

∂φ
(28)

L̂y = −ih̄ cosφ
∂

∂θ
+ ih̄ cot θ sinφ

∂

∂φ
(29)

L̂z = −ih̄ ∂

∂φ
(30)

We can see that it is much easier to obtain the z component of the angular momentum from explicitly
written wavefunction Ψ(r, θ, φ). Hence, if we will consider some one component of angular momentum, we
will usually mean the z component, as it is much easier to obtain in spherical polar coordinates.
Another important property to notice is that none of the operators depends in any way on r. This means
that the eigenfunctions of these operators (spherical harmonics) are only dependent on θ and φ, and
multiplying them by some function of radius is the same as multiplication by a scalar constant.
From these forms, we can calculate the form of L̂2 in spherical polar coordinates.

L̂2 = L̂2
x + L̂2

y + L̂2
z

L̂2
x = −h̄2

(
sin2 φ

∂2

∂θ2
+ sinφ

∂

∂θ
cot θ cosφ

∂

∂φ
+ cot θ cosφ

∂

∂φ
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
cot θ cosφ

∂

∂φ

)
=

= −h̄2

(
sin2 φ

∂2

∂θ2
− sinφ cosφ

1

sin2 θ

∂

∂φ
+ sinφ cosφ cot θ

∂2

∂θ∂φ
+ cot θ cos2 φ

∂

∂θ
+

+ sinφ cosφ cot θ
∂2

∂θ∂φ
− cot2 θ sinφ cosφ

∂

∂φ
+ cot2 θ cos2 φ

∂2

∂φ2

)
=

= −h̄2

(
sin2 φ

∂2

∂θ2
− sinφ cosφ

(
1

sin2 θ
+ cot2 θ

)
∂

∂φ
+ 2 sinφ cosφ cot θ

∂2

∂θ∂φ
+

+ cot θ cos2 φ
∂

∂θ
+ cot2 θ cos2 φ

∂2

∂φ2

)
Similarly

L̂2
y = −h̄2

(
cos2 φ

∂2

∂θ2
− cosφ

∂

∂θ
cot θ sinφ

∂

∂φ
− cot θ sinφ

∂

∂φ
cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ
cot θ sinφ

∂

∂φ

)
=
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= −h̄2

(
cos2 φ

∂2

∂θ2
+ sinφ cosφ

1

sin2 θ

∂

∂φ
− sinφ cosφ cot θ

∂2

∂θ∂φ
+ cot θ sin2 φ

∂

∂θ
− sinφ cosφ cot θ

∂2

∂θ∂φ
+

+ cot2 θ sinφ cosφ
∂

∂φ
+ cot2 θ sin2 φ

∂2

∂φ2

)
=

= −h̄2

(
cos2 φ

∂2

∂θ2
− 2 cot θ sinφ cosφ

∂2

∂θ∂φ
+ sinφ cosφ

(
1

sin2 θ
+ cot2 θ

)
∂

∂φ
+

+ cot θ sin2 φ
∂

∂θ
+ cot2 θ sin2 φ

∂2

∂2φ

)
Adding together L̂2

x and L̂2
y leads to major simplification

L̂2
x + L̂2

y = −h̄2

((
sin2 φ+ cos2 φ

) ∂2

∂θ2
+ cot θ

(
cos2 φ+ sin2 φ

) ∂
∂θ

+ cot2 θ
(
cos2 φ+ sin2 φ

) ∂2

∂φ2

)
=

= −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂φ2

)
= −h̄2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ cot2 θ

∂2

∂φ2

)
Finally,

L̂2
z = −h̄2 ∂

2

∂φ2

And therefore

L̂2 = L̂2
x + L̂2

y + L̂2
z = −h̄2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ (cot2 θ + 1)

∂2

∂φ2

)
L̂2 = −h̄2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
2.4.3 Commutation with Hamiltonian Operator

Now, we return to cartesian coordinates and discover the commutators of hamiltonian operator and angular
momentum operators. Starting from L̂x and using full form of hamiltonian (3D)

Ĥ = − h̄2

2m
∇2 + V (x, y, z) =

1

2m

(
p̂2
x + p̂2

y + p̂2
z

)
+ V (x, y, z)

[L̂x, Ĥ] = [yp̂z − zp̂y,
1

2m

(
p̂2
x + p̂2

y + p̂2
z

)
+ V ] =

= [yp̂z,
p̂2
x

2m
+

p̂2
y

2m
+

p̂2
z

2m
+ V ]− [zp̂y,

p̂2
x

2m
+

p̂2
y

2m
+

p̂2
z

2m
+ V ] =

= [
p̂2
x

2m
+

p̂2
y

2m
+

p̂2
z

2m
+ V, zp̂y]− [

p̂2
x

2m
+

p̂2
y

2m
+

p̂2
z

2m
+ V, yp̂z] =

=
1

2m

(
[p̂2
x, zp̂y] + [p̂2

y, zp̂y] + [p̂2
z, zp̂y]− [p̂2

x, yp̂z]− [p̂2
y, yp̂z]− [p̂2

z, yp̂z]
)

+ [V, zp̂y]− [V, yp̂z] =

=
1

2m

(
[p̂2
z, zp̂y]− [p̂2

y, yp̂z]
)

+ [V, z]p̂y + z[V, p̂y]− [V, y]p̂z − y[V, p̂z] =

=
1

2m

(
[p̂2
z, z]p̂y + z[p̂2

z, p̂y]− [p̂2
y, y]p̂z − y[p̂2

y, p̂z]
)

+ z[V, p̂y]− y[V, p̂z] =

=
1

2m

(
[y, p̂2

y]p̂z − [z, p̂2
z]p̂y

)
+ z[V, p̂y]− y[V, p̂z] =

=
1

2m
([y, p̂y]p̂yp̂z + p̂y[y, p̂y]p̂z − [z, p̂z]p̂z p̂y − p̂z[z, p̂z]p̂y) + z[V, p̂y]− y[V, p̂z]

Since momentum operators commute and [xi, p̂xi ] = ih̄ is a constant for every x̂i, we have

[L̂x, Ĥ] =
ih̄

2m
(p̂yp̂z + p̂yp̂z − p̂z p̂y − p̂z p̂y) + y[p̂z, V ]− z[p̂y, V ] = y[p̂z, V ]− z[p̂y, V ]
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Similarly

[L̂y, Ĥ] = [
1

2m
(p̂2
x + p̂2

y + p̂2
z) + V, xp̂z]− [

1

2m
(p̂2
x + p̂2

y + p̂2
z) + V, zp̂x] =

=
1

2m

(
[p̂2
x, xp̂z] + [p̂2

y, xp̂z] + [p̂2
z, xp̂z]− [p̂2

x, zp̂x]− [p̂2
y, zp̂x]− [p̂2

z, zp̂x]
)

+ z[p̂x, V ]− x[p̂z, V ] =

=
1

2m

(
[p̂2
x, x]p̂z + x[p̂2

x, p̂z]− [p̂2
z, z]p̂x − z[p̂2

z, p̂x]
)

+ z[p̂x, V ]− x[p̂z, V ] =

=
1

2m
([z, p̂z]p̂z p̂x + p̂z[z, p̂z]p̂x − [x, p̂x]p̂xp̂z − p̂x[x, p̂x]p̂z) + z[p̂x, V ]− x[p̂z, V ] =

=
ih̄

2m
(p̂z p̂x + p̂z p̂x − p̂xp̂z − p̂xp̂z) + z[p̂x, V ]− x[p̂z, V ] = z[p̂x, V ]− x[p̂z, V ]

And

[L̂z, Ĥ] = [
1

2m
(p̂2
x + p̂2

y + p̂2
z) + V, yp̂x]− [

1

2m
(p̂2
x + p̂2

y + p̂2
z) + V, xp̂y] =

=
1

2m

(
[p̂2
x, yp̂x] + [p̂2

y, yp̂x] + [p̂2
z, yp̂x]− [p̂2

x, xp̂y]− [p̂2
y, xp̂y]− [p̂2

z, xp̂y]
)

+ x[p̂y, V ]− y[p̂x, V ] =

=
1

2m

(
[p̂2
y, y]p̂x + y[p̂2

y, p̂x]− [p̂2
x, x]p̂y − x[p̂2

x, p̂y]
)

+ x[p̂y, V ]− y[p̂x, V ] =

=
1

2m
([x, p̂x]p̂xp̂y + p̂x[x, p̂x]p̂y − [y, p̂y]p̂yp̂x − p̂y[y, p̂y]p̂x) + x[p̂y, V ]− y[p̂x, V ] =

=
ih̄

2m
(p̂xp̂y + p̂xp̂y − p̂yp̂x − p̂yp̂x) + x[p̂y, V ]− y[p̂x, V ] = x[p̂y, V ]− y[p̂x, V ]

In summary
[L̂x, Ĥ] = y[p̂z, V ]− z[p̂y, V ]

[L̂y, Ĥ] = z[p̂x, V ]− x[p̂z, V ]

[L̂z, Ĥ] = x[p̂y, V ]− y[p̂x, V ]

To calculate the commutators involving the potential, we use

[p̂xi , V ] = (−ih̄)

(
∂

∂xi
V − V ∂

∂xi

)
= (−ih̄)

∂V

∂xi

Hence

[L̂x, Ĥ] = y(−ih̄)
∂V

∂z
− z(−ih̄)

∂V

∂y
= −ih̄(~r × (∇V ))x (31)

[L̂y, Ĥ] = −ih̄(~r × (∇V ))y (32)

[L̂z, Ĥ] = −ih̄(~r × (∇V ))z (33)

where ~r is the position vector and ∇V is the gradient of potential.
Interesting is a special case when potential is radial, i.e. V = V (r), where r is radius in spherical polar
coordinates. Then

∇V =
∂V

∂r
êr

where êr is the unit vector in the direction of position vector ~r.
But in this case

~r × (∇V ) =
∂V

∂r
r(êr × êr) = ~0

where ~0 is the zero vector. This means that

[L̂x, Ĥ] = [L̂y, Ĥ] = [L̂z, Ĥ] = 0

and thus also
[L̂2, Ĥ] = [L̂2

x, Ĥ] + [L̂2
y, Ĥ] + [L̂2

z, Ĥ] =

= [L̂x, Ĥ]L̂x + L̂x[L̂x, Ĥ] + [L̂y, Ĥ]L̂y + L̂y[L̂y, Ĥ] + [L̂z, Ĥ]L̂z + L̂z[L̂z, Ĥ] = 0

Therefore, for central potential, hamiltonian operator, angular momentum magnitude operator and one
angular momentum component operator are all compatible operators and they have a common set of
eigenfunctions. These eigenfunctions consist of spherical harmonics (which only depend on θ and φ), which
are multiplied by some radial function R(r). Therefore, the eigenstates of energy for radial potential can
be written as

Ψ(r, θ, φ) = R(r)Y (θ, φ) (34)

where Y (θ, φ) is the spherical harmonic.
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2.5 Spherical Harmonics

Spherical harmonics are the eigenfunctions of L̂2 and L̂z operators (choosing component L̂z because of its
simple form in spherical coordinates). The eigenvalue equations are

L̂zY = lzY

L̂2Y = L2Y

where L is the magnitude of the angular momentum and lz is the component of the angular momentum
along the z direction.

2.5.1 Raising and Lowering Operators

Now consider two artificial operators
L̂+ = L̂x + iL̂y

L̂− = L̂x − iL̂y

To understand the properties of these operators, consider applying L̂+ to the L̂z eigenvalue equation. Lets
also denote the specific function which gives eigenvalue lz as Y = Ylml

L̂zYlml = lzYlml

L̂+L̂zYlml = lzL+Ylml

([L̂+, L̂z] + L̂zL̂+)Ylml = lzL̂+Ylml

Now we find the commutator

[L̂+, L̂z] = [L̂x + iL̂y, L̂z] = [L̂x, L̂z] + i[L̂y, L̂z] = −ih̄L̂y + i(ih̄)L̂x = (−h̄)(L̂x + iL̂y) = −h̄L̂+

Hence the equation becomes
(−h̄L̂+ + L̂zL̂+)Ylml = lzL̂+Ylml

(L̂z − h̄)(L̂+Ylml) = lz(L̂+Ylml)

L̂z(L̂+Ylml) = (lz + h̄)(L̂+Ylml)

This means that L̂+Ylml is also an eigenvalue equation, with eigenvalue lz + h̄. We can label

L̂+Ylml = Yl(ml+1)

Similarly
L̂−L̂zYlml = lzL̂−Ylml

[L̂−, L̂z] = [L̂x, L̂z]− i[L̂y, L̂z] = −ih̄L̂y − i(ih̄)L̂x = h̄(L̂x − iL̂y) = h̄L̂−

L̂−L̂zYlml = ([L̂−, L̂z] + L̂zL̂−)Ylml = lzL̂−Ylml

(L̂z + h̄)(L̂−Ylml) = lzL̂−Ylml

Labeling L̂−Ylml = Yl(ml−1)

(L̂z + h̄)Yl(ml−1) = lzYl(ml−1)

L̂zYl(ml−1) = (lz − h̄)Yl(ml−1)

So, Yl(ml−1) is also an eigenfunction of L̂z and has eigenvalue lz − h̄.
Furthemore, lets apply this operator to the other eigenvalue equation

L̂+L̂
2Ylml = L2L̂+Ylml

([L̂+, L̂
2] + L̂2L̂+)Ylml = L2Yl(ml+1)

[L̂+, L̂
2] = [L̂x, L̂

2] + i[L̂y, L̂
2] = 0

So
L̂2Yl(ml+1) = L2Yl(ml+1)
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which means that Yl(ml+1) is also an eigenvalue of the L̂2 operator with the same eigenvalue as Ylml (hence
the second index l in Y , which will be used to distinguish between different total angular momenta L).
Similarly

[L̂−, L̂
2] = [L̂x, L̂

2]− i[L̂y, L̂2] = 0

L̂−L̂
2Ylml = L2Yl(ml−1)

L̂2Yl(ml−1) = L2Yl(ml−1)

It should be noted though that operating with L̂− does not produce the function properly normalized -
the function is multiplied by some constant of dimensions of angular momentum. Similarly for L̂+, the
eigenfunction Yl(ml+1) is multiplied by some constant of dimensions of angular momentum. Because of this,

we cannot write that operating consecutively with L̂+ and L̂− produces the original function, i. e.

L̂+L̂−Ylml 6= Ylml

For the eigenvalue of L̂z to make sense, its absolute value must be less than or equal to L - maximum value
of component along z direction is the value of magnitude of the angular momentum. This means

|lz| ≤ L

−L ≤ lz ≤ L

This means that there exists some maximum and minimum Ylml,max and Ylml,min for which we can no

longer increase/decrease the value of lz for any other consecutive application of L̂±. To ensure this, we set

L̂+Ylml,max = 0

L̂−Ylml,min = 0

Applying L̂− to both sides of the first equation gives us

L̂−L̂+Ylml,max = 0

([L̂−, L̂+] + L̂+L̂−)Ylml,max = 0

We now need to find commutator

[L̂−, L̂+] = [L̂x − iL̂y, L̂x + iL̂y] = [L̂x, L̂x + iL̂y]− i[L̂y, L̂x + L̂y] = i[L̂x + iL̂y, L̂y]− [L̂x + iL̂y, L̂x] =

= i[L̂x, L̂y]− [L̂y, L̂y]− [L̂x, L̂x]− i[L̂y, L̂x] = −h̄L̂z + i[L̂x, L̂y] = −h̄L̂z − h̄L̂z = −2h̄L̂z

Hence
(−2h̄L̂z + L̂+L̂−)Ylml,max = 0

L̂+L̂−Ylml,max = 2h̄L̂zYlml,max

Applying the operators explicitly

L̂+L̂− = (L̂x + iL̂y)(L̂x − iL̂y) = L̂2
x − iL̂xL̂y + iL̂yL̂x + L̂2

y = L̂2
x + L̂2

y + L̂2
z − L̂2

z − i(L̂x, L̂y − L̂y )̂ =

= L̂2 − L̂2
z − i[L̂x, L̂y] = L̂2 − L̂2

z − i(ih̄)L̂z = L̂2 + h̄L̂z − L̂2
z

And
(L̂2 + h̄L̂z − L̂2

z)Ylml,max = 2h̄lz,maxYlml,max

Applying the eigenvalue equations

(L2 + h̄lz,max − l2z,max)Ylml,max = 2h̄Ylml,max

L2Ylml,max = lz,max(lz,max + h̄)Ylml,max

For non trivial solutions, this means that

L2 = lz,max(lz,max + h̄) (35)
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Similarly, we can apply L̂+ to both sides for boundary condition for Ylml,min

L̂+L̂−Ylml,min = 0

([L̂+, L̂−] + L̂−L̂+)Ylml,min = 0

(L̂−L̂+ − [L̂−, L̂+])Ylml,min = 0

(L̂−L̂+ + 2h̄L̂z)Ylml,min = 0

L̂−L̂+Ylml,min = −2h̄L̂zYlml,min

L̂−L̂+ = (L̂x − iL̂y)(L̂x + iL̂y) = L̂2
x + L̂2

y + i(L̂xL̂y − L̂yL̂x) = L̂2 − L̂2
z + i(ih̄)L̂z = L̂2 − L̂2

z − h̄L̂z

(L̂2 − L̂2
z − h̄L̂z)Ylml,min = −2h̄L̂zYlml,min

(L2 − l2z,min − h̄lz,min)Ylml,min = −2h̄lz,minYlml,min

L2Ylml,min = lz,min(lz,min − h̄)Ylml,min

This means that
L2 = l2z,min − h̄lz,min

l2z,max + h̄lz,max = l2z,min − h̄lz,min
This equation has two possible solutions. One is trivial lz,min = lz,max = 0, other is non-trivial and states
that

lz,max = −lz,min
Since the value of lz always changes only by ±h̄ (using raising/lowering operators), the difference of the
two extremal values must be an integer multiple of h̄, i. e.

lz,max − lz,min = nh̄

Together with the previous equation, we then derive that

lz,max =
nh̄

2
= −lz,min

this means that the maximum value of component of angular momentum obtained by the operator is equal
to a half integer if n is odd or full integer if n is even. This distinction has a close connection to the spin
of particles.
In summary, we learned that the eigenvalues of total angular momentum operator L̂2 are L2 such that

L = h̄

√
n

2
(
n

2
+ 1) (36)

where n is a positive integer. Usually, we denote l = n
2 , where l is the l from the spherical harmonic lower

index. Then L = h̄
√
l(l + 1).

Also, the eigenvalues of the L̂z operator are lz such that

lz = mlh̄ (37)

where ml is an integer going from −n2 to n
2 .

2.5.2 Particle on a Sphere

If there is a particle confined to a sphere of constant radius but otherwise free to move, the potential for
the particle is radial and in form of −δ(r).
Then, the energy eigenfunctions of the particle are spherical harmonics, since the hamiltonian in this case
commutes with both L̂2 and L̂z. The general state is then a superposition of more spherical harmonics.
In order to be able to do a hamiltonian operation on such wavefunction, we need a explicit form of the
wavefunction, and hence a explicit form of the spherical harmonic. For given total angular momentum
L = h̄

√
l(l + 1), the energy eigenvalue equation can be expressed as

ĤYlml = ElmlYlml
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The V is constant on the sphere, so it can be set to zero. Then, we are left with

− h̄2

2m
∇2Ylml = ElmlYlml

Where ∇2 is the Laplacian operator. Since there is no dependence of Ylml on radius r, the Laplacian
operator is simply

∇2 =
1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

We see that this can be expressed in form of total angular momentum operator L̂2 as

∇2 =
−L̂2

h̄2r2

Hence

Ĥ = − h̄2

2m
∇2 =

L̂2

2mr2

We see that for such a free particle on a sphere, only energy present is due to its angular momentum, which
should not come as a surprise. Using our L̂2 eigenvalue equation

L̂2Ylml = h̄2l(l + 1)Ylml

The energy eigenvalue equation becomes

ĤYlml = ElmlYlml

L̂2

2mr2
Ylml = ElmlYlml

h̄2l(l + 1)

2mr2
Ylml = ElmlYlml

Elml =
h̄2l(l + 1)

2mr2

And we thus found the energy of the particle.

2.5.3 Spin Angular Momentum

Spin is a property of a particle that behaves like an internal angular momentum of a particle. The mathe-
matics and operators of spin angular momentum are taken from the operators of normal quantum angular
momentum, i. e.

ŝzΨ = mlh̄Ψ

where ml = n
2 for fermions, and ml = n for bosons, where n is an integer (for photons one). Also

ŝ2Ψ = h̄2s(s+ 1)Ψ

where s = 1
2 for fermions (maximum ml value) and s = n for bosons. Slight complications arise from

adding spins to the theory, because they cause state Ψ to have multiple possible values at the same points
in space. This leads to Ψ not being a classical wavefunction but rather a spinor. More on this problematic
is described in section on standard model and Dirac equation.
The spins are also cause for n in ml,max = n

2 (derived maximum ml for general central potential) to take
any value, not only even values.
In fact, for fermions in central potential, the angular momentum along certain axis has to be a half-integer
as well, because the fermion in central potential must still be a fermion.
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3 Hydrogen Like Atoms

Hydrogen like atoms are atoms that consist of small, heavy, positively charged nucleaus and one electron
orbiting said nucleus in a stationary state.
Since the nucleus is heavy, it does not move while the electron moves, which means that the potential
acting on the electron is a central potential with origin in the nucleus. Because nucleus is so small, we
assume it is point like.
As the potential is central, the energy eigenfunction is also an eigenfunction of the total angular momentum
operator L̂2 and operator L̂z. This means that the energy eigenfunction is of type

Ψnlmls(r, θ, φ) = Rn(r)Ylmls(θ, φ)

where we describe the function in terms of spherical polar coordinates and constant n is used to distinguish
multiple possible wavefunctions and radial functions R. Spin number s is explicitely added because of
historical reasons - l is not used in a form we derived thus far, but rather as a whole integer or zero that is
smaller by 1

2 than our predicted l. Our half-integer l is here usually denoted as j.
Since we would expect j to go as j = 1

2 ,
3
2 ,

5
2 , ..., l gere goes as l = 0, 1, 2, ..., and the half in total angular

momentum is interpreted as adding the spin angular momentum of 1
2 for the electron.

The energy eigenvalue equation is (coulombic potential in this case)

ĤΨnlmls = EnlmlsΨn

Hence (
− h̄2

2m
∇2 − Ze2

4πε0r

)
Ψn = EnlmlsΨn

Here, Ψnlmls can depend on r. The laplacian is

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
=

1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

h̄2r2

Hence, since Ψnlmls is an eigenfunction of L̂2 with eigenvalue being the total angular momentum

ĤΨnlmls =

[
− h̄2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+
h̄2j(j + 1)

2mr2
− Ze2

4πε0r

]
Ψnlmls = EnlmlsΨnlmls

Since the operator on the left depends only on r, this equation has to apply only for radial equation as
well, where partial derivatives become total derivatives[

− h̄2

2mr2

d

dr

(
r2 d

dr

)
+
h̄2j(j + 1)

2mr2
− Ze2

4πε0r

]
Rn(r) = EnlmlsRn(r) (38)

It turns out that the exact form of Rn also depends on j (or l, respectively). Hence, we should really name
the function Rnl. The functions that solve this differential equation are of form

Rnl = CnlPl

(
r

aB

)
e
− Zr
nab

where Pl are the associated Laguerre polynomials, always up to the order of l, ab = 0.529× 10−10 m is the
Bohr radius and Cnl is the normalisation constant.
The eigenvalues of the energy are surprisingly easy to obtain - they follow sequence

En =
−Z2E0

n2

where E0 ≈ 13.6 eV is the ionisation energy of the electron when it is closest possible to the nucleus of
hydrogen - so called Rydberg energy.
One important consequence of the eigenvalue equation which is not derived here is that number n is always
bigger than zero, an integer and also always bigger than l.
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3.1 Normalization

The wavefunction of the electron is normalized as∫
V

|Ψnlmls|2dV = 1

This can be expanded as ∫ ∞
0

∫ π

0

∫ 2π

0

|R(r)nlYlml |2r2 sin θdφdθdr = 1

This can be then factorized as(∫ ∞
0

R∗nlRnlr
2dr

)(∫ π

0

∫ 2π

0

Y ∗lmlYlml sin θdφdθ

)
= 1

Usually, we normalize spherical harmonics separately. To normalize spherical harmonics, we require∫ π

0

∫ 2π

0

Y ∗lmlYlml sin θdφdθ = 1

Which can be also written in terms of solid angle∫
Ω

Y ∗lmlYlmldΩ = 1

where the integration goes over all space - full solid angle.
The normalization of the wavefunction than is simply∫ ∞

0

R∗nlRnlr
2dr = 1

3.2 Zeeman Effect

So for, we could see that the Hamiltonian does not feature L̂z operator - the energy of the electron is
independent of the direction of the angular momentum (only depends on its magnitude). This however
changes when the atom is inside a magnetic field. The energy of the electron iside the magnetic field is
given by

Em = −~µe · ~B

where ~B is the magnetic induction vector and µe is the magnetic moment generated by the electron.
This moment is

~µe = ~µ+ ~µs

Where ~µ is the magnetic moment due to electron orbiting around the nucleus and µs is the spin magnetic
moment.
Since only the direction along ~B matters for energy determination, if we choose ~B to define z direction, L̂z
returns the angular momentum in z direction of the electron orbit.
The angular momentum of a point particle can be classically expressed as ~L = ~r×m~v. The current due to
this particle is then

~I =
q

T
v̂

where T is the period of orbit of the particle, q is the charge of the particle and v̂ is the unit vector in the
direction of the velocity of the particle.
For a circular orbit, ~r ⊥ ~v, so

~L = mrvk̂

if we choose the orbit in xy plane (and thus determine the z component of the angular momentum). Now,
we are mostly interested in magnitudes of these vectors. Again, assuming circular orbit

I =
q

T
=

q
2πr
v

=
qv

2πr
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The magnetic moment will be then (A is the area swiped by the particle)

~µ = IAk̂ =
qv

2πr
πr2k̂ =

qv

2
rk̂ =

q

2
vrk̂ =

q

2m
~L

By correspondence principle, we then define the orbital magnetic moment operator as

µ̂ =
q

2m
L̂z

which has, for our energy eigenstates, which are also eigenstates of L̂z, eigenvalues µ = q
2m h̄ml. In case of

electron
µ =

e

2me
h̄ml

The above derivation was for a point particle in a magnetic field. But what about a spinning charged body
in a magnetic field? For such body, we define the magnetic moment as sum of magnetic moments of the
elements of the body, which are essentially the point particles, i.e. as an integral

~µ =

∫
V

1

2

dq

dm
d~L =

1

2

q

m
g~L

where g is the bodies gyromagnetic ratio. If the charged is spread evenly, g is a scalar, otherwise it is
generally a tensor (similar to moment of inertia).
In the case of electron, the spin of the electron creates a spin mangetic moment, so

µ̂s =
1

2

e

me
gŝz

hence the eigenvalues are

µs =
e

2me
gh̄s

And thus the total magnetic moment is

~µe = ~µ+ ~µs =
e

2me
(~Lz + g~sz) =

eh̄

2me
(ml + gs)k̂

We should remember that ml here refers to the angular momentum without the influence of the spin,
therefore it is a whole integer. Also, it should be noted that this means that ~µ 6 ‖ ~J , where ~J is the total

angular momentum, ~J = ~Lz + ~sz.
Hence the energy of the interaction is

Em = −~µ · ~B = − eh̄

2me
(ml + gs)B = −µB(ml + gs)B

Here, constant µB = eh̄
2me

is called the Bohr magneton.
The gyromagnetic ration g determination for electron is beyond this course, but it comes out of QED as
approximately 2.

3.2.1 Energy Levels in Atom

To further advance on the topic of Zeeman effect, we must consult the energy of different eigenstates of
electron in the atom. The main difference in energies of the atom is due to the the main quantum number,
n. Bigger n means bigger total energy of the electron. Smaller difference in energy is due to the orbital
energy, and therefore due to quantum number l. Finally, even smaller energy difference is due to magnetic
moments of the electrons in orbits, which generally correspond to quantum numbers ml and s.
The orbitals (energy eigenstates of the electron) in the atom are labeled by the main number, latter and a
number in the index.
The main number corresponds to the n number. The letter corresponds to the l number in sequence s, p,
d, f, ... . There l is a whole integer. The index number corresponds to total angular momentum (orbital +
spin angular momentum) of the electron in the specified state.
The spin-orbit coupling is an effect due to electron orbiting the nucleus, and therefore does not occur for
orbitals with no orbit angular momentum (l = 0).
Imagine a frame of reference with stationary electron - the positive nucleus orbits around the electron. This
creates a magnetic field. The spin magnetic moment of the electron in this field interacts and different spin
has different energy. Usually, this effect is quite weak, and spectral line splitting due to spin-orbit coupling
is usually called anomalous Zeeman effect, and occurs without presence of external magnetic field. For
example, the sodium doublet is created by spin-orbit splitting of 3p orbital ( the transitions to 3s level)
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Figure 1: Energy levels in an atom. The levels most left are simply due to n and l. The levels on the right
of these are changed by spin-orbit coupling. The most right levels are separated by external magnetic field
and different ml, together with the effect of spin-orbit coupling

3.2.2 Selection Rules

Since the transitions between the energy levels of atoms occurs by absorbtion/fluorescence of a photon,
which carries spin angular momentum of h̄, only certain transitions are allowed, due to conservation of
angular momentum. Particularly, total angular momentum number j must always change by ±1, and
magnetic angular momentum number ml must change by ±1 or stay the same (angular momentum increased
for components in xy plane).

3.3 Multiple Electron Atoms

To generally predict behaviour of more than one electron in central Coulombic field is practically impossible.
Therefore, models are used to simulate the real situation. Here, we mention the central field approximation.

3.3.1 Central Field Approximation

We can see that as n increases, the distance of the main part of R part of the wavefunction of the electrons
from the nucleus increases. Therefore, we can come up with the concept of shells. Shell is a group of energy
states of the atom with the same n. They are usually refered to either by numbers or by big latin letters
starting from K.
The central field approximation assumes that electrons in the same shell do not interact, and that their
wavefunctions behave like wavefunctions of electron around a hydrogen-like atom in given shell, with charge
of the nucleus reduced by charge of the electrons in shells with smaller n. Also, central field approximation
assumes that Pauli’s exclusion principle applies, so that no two electrons exist with all four quantum
numbers the same.

3.3.2 Hund’s First Rule

We can now imagine filling the orbitals of the atom with electrons. We can imagine that first orbital 1s is
filled, after that 2s, then 2p etc. However, there is one exception to this. The spin-orbit coupling interaction
is not very strong and in fact more powerful effect is the allignment of electron spins in the same orbital.

35



PX262 - Quantum Mechanics & its Applications Formulae list and derivation

Therefore, Hund’s first rule states that orbitals are first filled with electrons with the same spin, and only
afterwards these start to fill with electrons with opposite spins.
For example, say we have a nucleus with filled 1s and 2s orbitals. Now we add other electrons. First goes
to 2p orbital, second also to 2p with the same spin, which means that it has different ml. Third goes also
to 2p with the same spin, hence it has yet a different ml. Finally, the fourth electron has to have opposite
spin and ml identical with one of the previous electrons.
This procedure can be then used to predict electronic configuration of elements in the periodic table.

4 Free Fermi Gases

Free Fermi gases are systems of fermions within the infinite potential well of finite dimensions. The hamil-
tonian operator of a wavefunction in this potential well is

Ĥ = − h̄2

2m
∇2 + V (~r)

where V (~r) = 0 if ~r is position vector of point inside the well and V (~r) → ∞ if ~r is outside the well. We
consider large systems - large potential wells - relative to the wavelengths of the fermions in such systems.
This means that, if the medium is isotropic, which is what we usually require, the boundary conditions in
parts of the medium must be translatable, and thus periodic - wavefunction of a particle at some end of
the part must be the same as at the other end of the part/system.
In order for TISE equation to apply, ψ(~r) → 0 for ~r outside the system. Therefore, we only need to solve
TISE inside the system, where V = 0. So, we have

Ĥψ = − h̄2

2m
∇2ψ = Eψ

we try to find the eigenfunctions and eigenvalues of this hamiltonian Ĥ. We can notice that

[Ĥ, p̂i] =
ih̄3

2m

(
∇2 ∂

∂xi
− ∂

∂xi
∇2

)
= 0

for operator p̂i of component of momentum in any direction. This means that the hamiltonian operator and
momentum operators are compatible, hence they share a common set of eigenfunctions. Eigenfunctions of
p̂i are typically plane waves

ψp = Ceikixi

where ki is some wavenumber and C is the normalization constant.
Furthemore, we can notice that

Ĥ =
1

2m

(
p̂2
x + p̂2

y + p̂2
z

)
Which means that there are no other than momentum operators in the hamiltonian. Hence, the eigen-
functions of this free hamiltonian are simply the products of three eigenfunctions of momentum component
operators. Some eigenfunction of the hamiltonian is then

ψ = Ceikxxeikyyeikzz (39)

where C is the normalization constant.
This can be rewritten as

ψ = Cei(kxx+kyy+kzz) = Cei
~k·~r

where ~k is the wavevector of the fermion.
Now, we invoke the periodic boundary conditions on a cube of the whole system - we require that

ψ(x+ Lx, y, z) = ψ(x, y, z)

ψ(x, y + Ly, z) = ψ(x, y, z)

ψ(x, y, z + Lz) = ψ(x, y, z)

These reduce to
Ceiki(xi+Li)ei(kjxj+klxl) = Cei(kixi+kjxj+klxl)
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where i 6= j 6= l and xi corresponds to some coordinate. This means that

eikiLi = 1

ki =
2πni
Li

kx =
2πnx
Lx

, ky =
2πny
Ly

, kz =
2πnz
Lz

This means that the eigenstates of the energy are quantized.
Now, if we add fermions to the system, due to exclusion principle, only two fermions can have identical
triplet (nx, ny, nz) and these must differ in spin. This means that the more fermions are added to the
system, the bigger momenta, and thus energy, they have.

4.1 Fermi Surface

Now, imagine adding the fermions to the system at 0 K. This means that all fermions will be in the state
with the lowest energy. However, multiple states correspond to the same energy. To see this, lets find the
energy of the fermion in its eigenstate using TISE

Eψ = − h̄2

2m
∇2Ψ = − h̄2

2m
∇2
(
Cei(kxx+kyy+kzz)

)
= − h̄2

2m

(
−k2

x − k2
y − k2

z

)
Cei(kxx+kyy+kzz) =

h̄2|~k|2

2m
ψ

E =
h̄2|~k|2

2m
(40)

where |~k| =
√
k2
x + k2

y + k2
z and ki = 2πni

Li
. We can clearly see that state characterized by (nx, ny, nz) =

(1, 0, 0) and another state with (nx, ny, nz) = (0, 1, 0) have the same energy.
If there is a big number of fermions in the system, we can try to further understand how the fermions are
distributed between these states.
Consider a map of states in wavevector space. This means a set of points ~k such that each point has

coordinates ~k =
(

2πnx
Lx

,
2πny
Ly

, 2πnz
Lz

)
. We search for number of states that have energy smaller than some

energy Ef . In our map, this corresponds to the number of points inside a sphere of radius |~kf | = 1
h̄

√
2mEf .

For a big number of points inside this sphere, this number can be approximated as the volume of the sphere
divided by the volume per one point - one state. The volume of the sphere is

Vf =
4

3
π|~kf |3 =

4

3
π

(
2mEf

h̄2

) 3
2

The volume per one state is the volume of the box created by smallest allowed changes of wavevectors.
Labeling it as ∆V

∆V = ∆kx∆ky∆kz =
(2π)3∆nx∆ny∆nz

LxLyLz

But, because ni are simply integers, the smallest change in them is 1. Hence

∆V =
(2π)3

V

where V is the volume of our system. This volume is independent of any quantum numbers, which is a
important property.
Hence the number of states with energy smaller than Ef is

N(Ef ) =
Vf
∆V

=
4π

3(2π)3

(
2mEf

h̄2

) 3
2

V

But, since each state can be occupied effectively by 2 fermions with opposite spins, the number of fermions
in the system with energy smaller than Ef is in fact

N(Ef ) = 2
Vf
∆V

=
8π

3× 8π3

(
2mEf

h̄2

) 3
2

V =
1

3π2

(
2mEf

h̄2

) 3
2

V (41)

37



PX262 - Quantum Mechanics & its Applications Formulae list and derivation

or in terms of wavevector

N(|~kf |) =
1

3π2

(
|~kf |2

) 3
2

V =
|~kf |3

3π2
V (42)

In case that N(Ef ) is the number of all fermions in the system, the corresponding energy Ef is called

the Fermi energy of the system. Similarly, ~kf is called the Fermi wavevector. In our case, the surface of

constant energy is surface of constant |~kf | because the fermions are free, but this generally does not have
to be true. In such case, the surface of constant energy forms a specific surface in the wavevector space,
called the Fermi surface.

4.1.1 Lower Dimensions

The same analysis can be carried out for number of states in lower number of dimensions that the fermions
move in. Lets start with 2 dimensions.
The analogue of sphere in 2 dimensions is a circle. Therefore, number of states with energy less then Ef
is the number of points in the wavevector space that are within circle centered on origin with radius |~kf |.
Hence

Vf = π|~kf |2 = π
2mEf

h̄2

represents the area of the circle (2D analogue of volume).
The volume (area) per one state is

∆V =
1

2
∆kx∆ky =

1

2

(2π)2∆nx∆ny
LxLy

=
2π2

V

where V is the volume (area) of the system (following the same process of determining square periodic
boundary conditions). The factor of 1

2 accounts for the spin degeneracy (two fermions in one energy state).
Hence

N(Ef ) =
Vf
∆V

=
1

2π

2mEf

h̄2 V

N(|~kf |) =
|~kf |2

2π
V

Similarly for one dimensional system

Vf = 2|kf | = 2

√
2mEf

h̄2

∆V =
1

2

2π∆nx
Lx

=
π

V

N(Ef ) =
Vf
∆V

=
2

π

√
2mEf

h̄2 V

N(|~kf |) =
2|~kf |
π

V

4.1.2 Density of States

We now the total number of occupied states with energy less then some energy E is

N(E) = CD

(
2mE

h̄2

)D
2

VD

where CD is some dimensionality dependent constant, VD is the dimensionality dependent volume (or area
or length) of the system and D is the number of dimensions.
To find the number of states between energies E and E + dE (labeled as N ′(E)), we take the difference of
total number of states with energy less then E + dE and total number of states with energy less then E.
For small dE

N ′(E) = N(E + dE)−N(E) =
dN

dE
dE
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Hence, we can use notation N ′(E) = dN(E). We can then see that the total number of states can be
reconstructed as

N(E) =

∫ E

0

dN =

∫ E

0

dN

dE
dE

We usually mark dN
dE = g(E) and call g(E) the density of states. In 3D

g(E) =
d

dE

(
CD

(
2mE

h̄2

)D
2

)
VD = CD

D

2

(
2m

h̄2

)D
2

E
D−2

2 VD =
D

2

N(E)

E
(43)

To express the density of states in terms of wavevector, we must be a bit careful. We want the density of
states to behave as

dN(|~k|) = g(|~k|)d|~k|

labeling |~k| = k

g(k) =
dN

dk
=
dE

dk

dN

dE
=

d

dk

(
h̄2k2

2m

)
D

2
N(k)

2m

h̄2k2
= D

N(k)

k
= DCDk

D−1VD

Hence in 3D

g(E) =
1

3π2

3

2

(
2m

h̄2

) 3
2

E
1
2V3 =

1

2π2

(
2m

h̄2

) 3
2 √

EV3

g(k) = 3
1

3π2
k2V3 =

k2

π2
V3

In 2D

g(E) =
1

2π

(
2m

h̄2

)
V2

g(k) = 2
1

2π
kV2 =

k

π
V2

And in 1D

g(E) =
1

π

√
2m

h̄2

1√
E
V1

g(k) =
2

π
V1 =

2V1

π

4.1.3 Total Energy

Total energy of the system can be found by summing together product of energy E and number of states
at this energy dN(E) for all energies E occupied in the system. This is equal to

ET =

∫ Ef

0

EdN =

∫ Ef

0

E
dN

dE
dE =

∫ Ef

0

Eg(E)dE (44)

We can evaluate this as

ET =

∫ Ef

0

ECD
D

2

(
2m

h̄2

)D
2

E
D−2

2 VDdE = CD
D

2

(
2m

h̄2

)D
2

VD

∫ Ef

0

E
D
2 dE =

= CD
D

2

(
2m

h̄2

)D
2

VD
2

D + 2
E
D+2

2

f =
D

D + 2
N(Ef )Ef

Hence the average energy

< E >=
ET

N(Ef )
=

D

D + 2
Ef
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4.1.4 Fermi Energy and Wavevector

To find the explicit magnitude of the Fermi wavevector and Fermi energy, we use similar integral as before.
We know

N(Ef ) = NT =

∫ Ef

0

dN =

∫ Ef

0

g(E)dE

where NT is the total number of fermions in the system. This means

NT =

∫ Ef

0

CD
D

2

(
2m

h̄2

)D
2

E
D−2

2 VDdE = CD
D

2

(
2m

h̄2

)D
2

VD

∫ Ef

0

E
D−2

2 dE =

= CD
D

2

(
2m

h̄2

)D
2

VD
2

D
E
D
2

f = N(Ef )

which was expected. We can turn the equation around to find

E
D
2

f =
1

CD

(
h̄2

2m

)D
2 NT
VD

=

(
h̄2

2m

)D
2 n

CD

where n is the number density of fermions in the system. Hence

Ef =
h̄2

2m

(
n

CD

) 2
D

=
h̄2

2m

(
ρ

mCD

) 2
D

where ρ is the density of the fermions. In terms of Fermi wavenumber

k2
f =

(
n

CD

) 2
D

kf =

(
n

CD

) 1
D

=

(
ρ

mCD

) 1
D

4.2 Free Electron Gases in Metals

One classical example of free Fermi gases are free electron gases in metals. Electrons in metals are perfectly
dissociated from individual atoms and free to move in the crystal lattice of the metal. The nuclei of the
atoms only form a constant positive potential background and electrons are thus effectively trapped in a
potential well. Therefore, they obey relationships derived for free Fermi gases.
The Fermi energy for electrons in metals is generally quite high. Usually, the number density of electrons
is around n ≈ 1028 m−3, which leads to Ef ≈ 1.7eV , which corresponds to thermal oscillations around 20
000 K.
Some specifics for electrons in metals are now derived.

4.2.1 Conduction

We are interested in a cause behind conduction and its mathematical realisation in our free Fermi gases
formalism. To advance, consider TDSE for free electrons

ih̄
∂

∂t
Ψ = − h̄2

2m
∇2Ψ

Taking the complex conjugate

−ih̄ ∂
∂t

Ψ∗ = − h̄2

2m
∇2Ψ∗

Multiplying the first equation by Ψ∗ and the second by Ψ, we obtain set of equations

ih̄Ψ∗
∂

∂t
Ψ = − h̄2

2m
Ψ∗∇2Ψ

−ih̄Ψ
∂

∂t
Ψ∗ = − h̄2

2m
Ψ∇2Ψ∗
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Subtracting the second equation from the first one

ih̄

(
Ψ∗

∂

∂t
Ψ + Ψ

∂

∂t
Ψ∗
)

= − h̄2

2m

(
Ψ∗∇2Ψ−Ψ∇2Ψ∗

)
From vector analysis, we now that

∇ · (f~v) = (∇f) · ~v + f(∇ · ~v)

Hence we can say that
∇ · (Ψ∗∇Ψ) = (∇Ψ∗) · (∇Ψ) + Ψ∗∇2Ψ

Similarly
∇ · (Ψ∇Ψ∗) = (∇Ψ) · (∇Ψ∗) + Ψ∇2Ψ∗

Subtracting the first equation from the second one, we arrive at

∇ · (Ψ∗∇Ψ)−∇ · (Ψ∇Ψ∗) = Ψ∗∇2Ψ + (∇Ψ∗) · (∇Ψ)−Ψ∇2Ψ∗ − (∇Ψ) · (∇Ψ∗)

Since the scalar product is commutative and divergence operator is distributive with respect to addition

∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) = Ψ∗∇2Ψ−Ψ∇2Ψ∗

Hence the original equation becomes

ih̄
∂

∂t
(Ψ∗Ψ) = − h̄2

2m
∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗)

∂

∂t
(Ψ∗Ψ) = −∇ ·

(
h̄

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)

)
This resembles a continuity equation ∂ρ

∂t = −∇ ·~j where ~j = h̄
2mi (Ψ

∗∇Ψ−Ψ∇Ψ∗) is some flux density. It
turns out that this flux density in fact corresponds to the transport of the particle.

In our case, where Ψ = Cei
~k·~r

~j =
h̄

2mi

(
C∗e−i

~k·~r∇Cei~k·~r − Cei~k·~r∇C∗e−i~k·~r
)

=

= CC∗
h̄

2mi

(
e−i

~k·~r(ikxî+ iky ĵ + ikz k̂)ei
~k·~r − ei~k·~r(−ikxî− iky ĵ − ikz k̂)e−i

~k·~r
)

=

= |C|2 h̄

2m
(~k + ~k) = |C|2 h̄

m
~k

Hence the transport of the electrons is dependent on their wavevector. But if the wavevectors for different
electrons are symmetrically spaced around the origin, as we have assumed so far, there is no net transport.
This means that in a conducting free electron metal the centre of the spherical shell of constant energy
is effectively shifted in some direction. The transport than occurs in the direction of the shift, and is
proportional to the magnitude of the shift.
To show this more explicitly, we need to find the normalization constant for given plane waves with

~k =
2πnx
Lx

î+
2πny
Ly

ĵ +
2πnz
Lz

k̂

The normalization condition is

1 =

∫∫∫
V

Ψ∗ΨdV

1 =

∫ Lx

0

∫ Ly

0

∫ Lz

0

C∗e−i
~k·~rCei

~k·~rdzdydx = |C|2
∫ Lx

0

∫ Ly

0

∫ Lz

0

dzdydx = |C|2LxLyLz = |C|2V

|C|2 =
1

V

This has simplest form for C = 1√
V

. We see that the normalization constant is independent of ~k, which

will be critical in the next step.
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To find the overall transport flux density ~J of the system of free electrons, we need to sum the flux density
for transport of individual electrons for all electrons. That is

~J =
∑
i

~ji =
∑
i

h̄

2mi
(Ψ∗i∇Ψi −Ψi∇Ψ∗i ) =

h̄

m

∑
i

|Ci|2~ki =
h̄

V m

∑
i

~ki

Since the points in wavevector space are spaced symmetrically around the displacement ~kd for conducting
medium ∑

i

~ki = ~kd

Hence
~J =

h̄

V m
~kd

And we could speculate that the current density ~jq (current per unit area) goes as

~jq = e ~J =
h̄e

V m
~kd

4.2.2 Heat Capacity

The average occupacy of the energy states in with energy E at temperature T 6= 0 for fermions is called
the Fermi-Dirac distribution and has form

η(E, T ) =
1

e
(E−Ef )

kBT + 1

(45)

where kB is the Boltzmann constant and Ef is the Fermi energy.
At T → 0 limit, this distribution becomes a step function with η(E, 0) → 1 for E < Ef and η(E, 0) → 0
for E > Ef .
Using this distribution, the integral over all states becomes

NT =

∫ ∞
0

η(E, T )g(E)dE

where g(E) is the density of states. We can see that at T → 0, this reduces to already derived

NT =

∫ ∞
0

η(E, 0)g(E)dE =

∫ Ef

0

g(E)dE

Now consider the case of non-zero temperature. First, we find the value of η(Ef , T )

η(Ef , T ) =
1

e
Ef−Ef
kBT + 1

=
1

2

Now, consider a point E = Ef + ∆E. Fermi-Dirac distribution is

η(Ef + ∆E, T ) =
1

e
Ef+∆E−Ef

kBT + 1
=

1

e
∆E
kBT + 1

=
e
−∆E
kBT

1 + e
−∆E
kBT

= 1− 1

e
−∆E
kBT + 1

= 1− η(Ef −∆E, T )

η(Ef + ∆E, T ) = 1− η(Ef −∆E, T )

This means that the distribution is somewhat symmetrical around Ef .
Because Ef >> kBT , the distribution tends to 1 as E → 0 and to 0 as E → ∞. Consider a point
E = Ef + kBT

η(Ef + kBT, T ) =
1

e1 + 1
≈ 0.27

Hence the distributions main feature for common temperatures will be in rather small interval of approxi-
mately [Ef − kBT,Ef + kBT ]. Otherwise, the distribution is pretty much the same as for T = 0.
The total energy of the system at temperature T is then

ET (T ) =

∫ ∞
0

Eη(E, T )g(E)dE =

∫ Ef

0

Eη(E, T )g(E)dE +

∫ ∞
Ef

Eη(E, T )g(E)dE
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The energy at T = 0 is

ET (0) =

∫ ∞
0

Eη(E, 0)g(E)dE =

∫ Ef

0

Eg(E)dE

Hence the difference in the energy at T = 0 and at T = T is

ET (T )− ET (0) =

∫ Ef

0

Eg(E)(η(E, T )− 1)dE +

∫ ∞
Ef

Eη(E, T )g(E)dE

Since η(E, T ) − 1 for E < Ef is non-zero only for a small interval before Ef , and η(E, T ) for E > Ef is
non-zero only for a small interval after Ef , the density of states can be assumed to be constant along this
interval, i. e. g(E) ≈ g(Ef ) Hence

ET (T )− ET (0) =

∫ Ef

0

Eg(E)(η(E, T )− 1)dE +

∫ ∞
Ef

Eη(E, T )g(E)dE ≈

≈ g(Ef )

[∫ Ef

0

E(η(E, T )− 1)dE +

∫ ∞
Ef

Eη(E, T )dE

]
Performing a substitution E = Ef − E′ for the first integral and E = Ef + E′ for the second integral, we
obtain.

ET (T )− ET (0) ≈ g(Ef )

[∫ 0

Ef

(Ef − E′)(η(Ef − E′, T )(−dE′)) +

∫ ∞
0

(Ef + E′)η(Ef + E′, T )dE′

]
=

= g(Ef )

[∫ Ef

0

(E′ − Ef )(1− η(Ef − E′, T ))dE′ +

∫ ∞
0

(E′ + Ef )η(Ef + E′, T )dE′

]
=

Using the symmetry of Fermi-Dirac distribution and linearity of integration

= g(Ef )

[∫ Ef

0

E′η(Ef + E′, T )dE′ − Ef
∫ Ef

0

η(Ef + E′, T )dE′ +

∫ ∞
0

E′η(Ef + E′, T )dE′+

+Ef

∫ Ef

0

η(Ef + E′, T )dE′ + Ef

∫ ∞
Ef

η(Ef + E′, T )dE′

]
Now, since Ef is much bigger than kBT , we can assume that η(Ef +E′, T ) for any E′ ≥ Ef is practically
zero (this is equal to η(2Ef , T )). The last integral therefore goes to zero, and as the second one and fourth
subtract each other out, we are left with

ET (T )− ET (0) = g(Ef )

[∫ Ef

0

E′η(Ef + E′, T )dE′ +

∫ ∞
0

E′η(Ef + E′, T )dE′

]

Again, since η(Ef + E′, T ) goes to zero as an exponential, we can assume that E′η(Ef + E′, T ) will go to
zero as well for E′ ≥ Ef . Hence we can add

0 = g(Ef )

∫ ∞
Ef

E′η(Ef + E′, T )dE′

to the right hand side of the equation, and we obtain

ET (T )−ET (0) = g(Ef )

[∫ Ef

0

E′η(Ef + E′, T )dE′ +

∫ ∞
Ef

E′η(Ef + E′, T )dE′ +

∫ ∞
0

E′η(Ef + E′, T )dE′

]

ET (T )− ET (0) = 2g(Ef )

∫ ∞
0

E′η(Ef + E′, T )dE′

To proceed further, we consider the explicit form of this integral∫ ∞
0

E′η(Ef + E′, T )dE′ =

∫ ∞
0

E′
1

1 + e
Ef+E′−Ef

kBT

dE′ =

∫ ∞
0

E′
1

1 + e
E′
kBT

dE′
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Substituting x = E′

kBT ∫ ∞
0

E′
1

1 + e
E′
kBT

dE′ = k2
BT

2

∫ ∞
0

x

1 + ex
dx

The integral is a standadr integral and converges to π2

12 . Hence

ET (T )− ET (0) = 2g(Ef )k2
BT

2π
2

12
=
π2

6
g(Ef )k2

BT
2

Hence the heat capacity of the electron gas is

C = lim
∆T→0

ET (T + ∆T )− ET (T )

∆T
= lim

∆T→0

ET (T + ∆T )− ET (0)− (ET (T )− ET (0))

∆T
=

=
∂(ET (T )− ET (0))

∂T
=
π2

3
g(Ef )k2

BT

Substituting in for g(Ef ) (in 3D)

g(Ef ) =
1

2π2

(
2m

h̄2

) 3
2 √

EfV

where

Ef =
h̄2

2m

(
3π2N

V

) 2
3

where N is the number of fermions in the system.
Hence

g(Ef ) =
1

2π2

(
2m

h̄2

) 3
2
(
h̄2

2m

) 1
2
(

3π2N

V

) 1
3

V =
1

2π2

2m

h̄2

(
3π2N

) 1
3 V

2
3

And thus

C =
π2

3

1

2π2

2m

h̄2

(
3π2N

) 1
3 V

2
3 k2
BT =

1

3

m

h̄2

(
3π2N

) 1
3 V

2
3 k2
BT

4.2.3 Magnetic Susceptibility

When magnetic field is applied to the metal, the electrons with opposite spins do not have the same energy
anymore. Instead, energy of some electrons goes up by γ = µBB, where µB = eh̄

2me
is the Bohr magneton

and B is the magnitude of magnetic induction field applied, and energy of other electrons goes down by γ
We can express the density of states as sum of density of states of particles with one direction of spin that
has increased energy and the density of state of other particles with decreased energy

g(E) =
dN

dE
=
d(N+ +N−)

dE
=
dN+

dE
+
dN−
dE

= g+(E) + g−(E)

Since the energy of the interaction γ is usually small, the number of states that gets elevated by γ over the
original level is approximately

dN+ ≈
dN+

dE

∣∣∣∣∣
Ef

γ = g+(Ef )γ

Similarly, the number of states that decrease in energy compared to situation without external field is
approximately

dN− ≈ −
dN−
dE

∣∣∣∣∣
Ef

(−γ) = g−(Ef )γ

As a consequence of this shift in energies, some of the particles that had higher energy will switch spins in
order to decrease total energy. Therefore, all dN+ particles will switch to opposite spins. Therefore, there
is now 2dN+ particles more in the opposite spin (dN+ added with opposite spin and dN+ lost with original
spin). Hence, the overall magnetisation is

M = µB2dN+ ≈ µB2g+(Ef )γ
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Since before the application of B field there was no magnetisation, we had g+(Ef ) = g−(Ef ) = 1
2g(Ef ).

Therefore
M = µBg(Ef )µBB = g(Ef )µ2

BB (46)

Hence the (total) magnetic susceptibility is

χ =
∂M

∂B
= g(Ef )µ2

B (47)

This corresponds to linear magnetisation with no hysterisis, which corresponds to our assumption that the
electrons do not interact.

4.3 Compact Stars

Stars in certain period near the end of their life undergo contraction to a point when only the pressure due
to fermions being to close holds the star from becoming a black hole.
Where does this pressure come from? Modeling the fermions as free (which is usually quite good approxi-
mation) and star as homogeneous (only somewhat true during the end of life of the star), the energy of one
fermion is

E =
h̄2

2m
(k2
x + k2

y + k2
z) =

h2

2m

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
we can then see that if we decrease any of Lx, Ly or Lz, the energy of the fermion increases. This energy
has to be supplied somehow, and thus the compression of the system must be done with some force. This
is equivalent effect to a pressure from the system opposing the compression.
Now, imagine that the gravity of the star compresses it and the fermion pressure, called also the degeneracy
pressure, opposes this compression. To find whether there can exist a stable equilibrium when these effects
are equal, we may consider the gravitational potential energy of the star and kinetic energy of the fermions.
The gravitational potential energy is (assuming homogeneous star)

U =

∫ M

0

−GM
′(r)dm

r

where M ′(r) is the mass of the part of the star with distance from the centre smaller than r, dm is the
mass of the spherical shell of thickness dr at radius r, M is the total mass of the star and G is the Newton’s
gravitational constant.
For homogeneous star

M ′(r) =
4

3
πr3ρ

where ρ is density of the star, and
dm = 4πr2ρdr

Therefore

U =

∫ R

0

−G16

3
π2ρ2r4dr = −G16

15
π2ρ2R5 = −3

5

G

R

(
4

3
πR3ρ

)2

= −3

5

GM2

R

The kinetic energy of the fermions is (in 3D)

T =
3

5
NEf

where N is the number of fermions in the system. Using the average mass of the star per fermion (total
mass divided by number of fermions holding the star) mpf and relationship for Fermi energy

T =
3

5

M

mpf

h̄2

2m

(
3π2 N

4
3πR

3

) 2
3

=
3

5

M

mpf

h̄2

2m

(
9πM

4mpf

) 2
3 1

R2
=

3

5

(
9π

4

) 2
3
(
M

mpf

) 5
3 h̄2

2mR2

where m is the mass of the fermion, which is not neccesseraly equal to mpf , because the star might not be
made just from the fermions.
Therefore, both energies are simply functions of mass and radius of the star. To search for the minimum
of total energy with respect to radius R (for a fixed mass - mass has to be conserved for the star - which
is also an assumption), we write the total energy as

H = T + U =
α

R2
− β

R
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∂H

∂R
= −2

α

R3
+

β

R2
= 0

βR = 2α

R =
2α

β

where α = 3
5

(
9π
4

) 2
3

(
M
mpf

) 2
3 h̄2

2m and β = 3
5GM

2. Hence

R =
2

GM2

(
9π

4

) 2
3
(
M

mpf

) 5
3 h̄2

2m
=

(
9π

4

) 2
3 h̄2

mGM
1
3m

5
3

pf

For white dwarfs, which are stars about the with mass about tenth the mass of the sun, the fermions
supporting the stars are electrons. Assuming that there is approximately one proton for each electron in
the star (star was originally from hydrogen), mpf ≈ mp for white dwarfs, as electrons are very light. Using
the values stated

R ≈ 5× 107 m

which is comparable to the size of the Earth (about ten times as big). For more massive white dwarfs, the
size of the star starts to be similar to the earths size.
However, as the star gets smaller and smaller, the electrons get faster and faster, until they reach a high
relativistic limit. In this limit, the energy of the electron is approximated as

E ≈ h̄kc

Hence, the total energy of the fermions is

T =
3

5
Ef ≈

3

5
h̄ckf =

3

5
h̄c

(
3π2 3M

mpf4π2R3

) 1
3

=
3

5
h̄c

(
9π

4

) 1
3
(
M

mpf

) 1
3 1

R

This means that the total energy is

H =
α′

R
− β

R
=
α′ − β
R

For previous values, α′ ≈ 1.8× 10−7 J m and β ≈ 1.6× 1048 J m, which means that α′− β is negative, and
therefore the star can decrease the energy as long as it keeps decreasing its radius. This can lead to creation
to the neutron star, where the star is supported by neutrons instead of electrons. In this case, electrons
react with the protons to form neutrons, and hence mpf ≈ m = mn ≈ mp. Using the non-relativistic limit
again (for slow neutrons) and parameters as before

R ≈ 3× 104 m

which is about the size of a city.

4.4 Nuclei

The key observation here is that the density of nuclei is close to constant. This means that the volume
of the nucleus is proportional to the atomic number A, which is the sum of the number of protons and
neutrons, Z and N , respectively.
The nucleus is held together by the strong force, which has only very small range - effectively only directly
adjacent particles can be binded by it. Therefore, the binding energy of the strong force goes as a1A−a2A

2
3

since the particles on the surface (A
2
3 )do not have the same amount of adjacent particles as the particles

in the middle. For each other particle, there is some constant binding energy term.
Other part of the total energy of the nucleus is created by the Coulomb electrostatic interaction, which

goes as −a3
Z(Z−1)

A
1
3

, as only the protons interact.

Other important part is created by the proton and neutron movement. This is the part that can actually
be modelled by the free Fermi gas model.
Since protons and neutrons are different fermions, they both have different Fermi energies, EFZ and EFN .
The free fermion model predicts that the total kinetic energy will be

ET =
3

5
ZEFZ +

3

5
NEFN
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Substituting in for Fermi energy using the number density of protons and neutrons

ET =
3

5

(
Z

h̄2

2mZ

(
3π2nZ

) 2
3 +N

h̄2

2mN

(
3π2nN

) 2
3

)
≈ 3

5

h̄2

2mu
(3π2)

2
3

(
Zn

2
3

Z +Nn
2
3

N

)
Where we used that masses of proton and neutron are quite close and both are close to atomic mass unit
mu ≈ 1.67× 10−27 kg.
Using

nZ =
Z

V

and similar expression for nN , we obtain

ET =
3

5

h̄2

2mu

(
3π2

V

) 2
3 (
Z

5
3 +N

5
3

)
This can be rewritten as

ET =
3

5

h̄2

2mu

(
3π2

V

) 2
3

((
Z +N + Z −N

2

) 5
3

+

(
Z +N − (Z −N)

2

) 5
3

)

Since Z +N = A

ET =
3

5

h̄2

2mu

(
3π2

V

) 2
3
(
A

2

) 5
3

((
1 +

Z −N
A

) 5
3

+

(
1− Z −N

A

) 5
3

)

Usually, A >> Z −N (for big nuclei). Using binomial expansion(
1 +

(Z −N)

A

) 5
3

≈ 1 +
5

3

(Z −N)

A
+

5
3 ×

2
3

2

(Z −N)2

A2
= 1 +

5

3

(Z −N)

A
+

5

9

(Z −N)2

A2

Similarly (
1− (Z −N)

A

) 5
3

≈ 1− 5

3

(Z −N)

A
+

5

9

(Z −N)2

A2

Hence

ET =
3

5

h̄2

2mu

(
3π2

V

) 2
3
(
A

2

) 5
3
(

2 + 2× 5

9

(Z −N)2

A2

)
=

=
3

5

h̄2

2mu

(
3π2A

2

V

) 2
3 (

A+
5

9

(Z −N)2

A

)
We can see that the factor in front of the last term in brackets is the Fermi energy for case when there
is exactly the same number of neutrons and protons. This is why the correction in brackets is called the
asymmetry term. Using ρ = M

V ≈
Amu
V , where M is the total mass of the nucleus, we obtain

ET =
3

5

h̄2

2mu

(
3π2 ρ

2mu

) 2
3
(
A+

5

9

(Z −N)2

A

)
Since we observe that ρ is approximately constant for all nuclei, we can now determine ε̄F as a constant
and therefore have

ET =
3

5
ε̄FA+

3

5
ε̄F

(Z −N)2

A

Usually, the first term is subtracted from the bonding energy of the strong force, and is included in first
term a1A. The second term is a term on its own. Due to effective mass and other considerations, we

generalize it to a4
(N−Z)2

A .
The last term in the energy of the nucleus is so called pairing term. This term represents the energy due
to pairing of neutrons and protons. Right now it is more of a phenomenological term, as it for some reason
decreases as A−

4
3 . The full term is

a5

[
(−1)N + (−1)Z

]
2A

4
3
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This term is added to the binding energy, hence if there is even number of protons and neutrons, the
binding energy is increased (both types of particles in pairs), while for both even, the binding energy is
decreased.
The full total binding energy of the nucleus is then

UB = a1A− a2A
2
3 − a3

Z(Z − 1)

A
1
3

− a4
(N − Z)2

A
+ a5

(−1)N + (−1)Z

2A
4
3

4.5 Limitations of the Free Fermion Model

Free fermion model is very useful because it is very easy to understand and use. However, it is rarely
satisfied perfectly. In fact, the white dwarfs are the best real objects similar to free fermion system. In
metals, the behaviour is basically similar, but other processes take place as well. This is usually represented
in form of effective mass of electron - the electron is not taken as having mass m = me ≈ 511 keV but
rather at some mass m∗, which depends on the material. Otherwise, the model is usually quite precise for
well conducting metals.

5 Crystals and Lattices

5.1 Bravais Lattices

Many real materials form crystals. In description of crystals, the term of Bravais lattice makes occurance.
Bravais lattice is any set of objects ordered in space in such a way that the environment around each object
is identical for all objects in the lattice.
We usually say that the points at which the objects are placed are the lattice points, and the objects are
the lattice basis.
Usually, the requirement of identical environment leads to periodical structure.
We usually try to express real lattices as Bravais lattices using collection of atoms/ions as the basis of the
lattice (and sometimes the collection consists of a single atom/ion).
Another term usually mentioned in crystalography is the unit and primitive unit cells. Primitive unit cell
is the smallest collection of ions that can be the basis of a Bravais lattice. Unit cell is any collection that
can be the basis of a Bravais lattice, which can be for example a combination of primitive unit cells.
Surprisingly, there is not many possible Bravais lattices - 5 in 2D and 17 in 3D. We will not list them
explicitly here, but some basic, such as simple cubic, body-centeret cubic (BCC), face-centered cubic
(FCC) and hexagonal close packed (HCP) are hopefully known well. It should be noted that for the
identical particles, both BCC and FCC can be interpreted as simple cubic with multiatom basis.

5.2 Reciprocal Lattice Vectors

Since the crystal structure is usually periodical, all fields due to the atoms must have a periodical structure
as well. This means that we can express any function of position ~r as Fourier sum

f(~r) =
∑
~G

f~Ge
i ~G·~r

where the sum goes over all possible values of ~G.
Now assume that vectors ~a1, ~a2 and ~a3 form vector basis of the lattice - any translation from a lattice point
by vector ~a = m~a1 +n~a2 + o~a3 will only translate to a different lattice point, thus not creating any change.
This means that

f(~r + ~a) = f(~r)

This means that
ei
~G·(~r+~a) = ei

~G·~r

ei
~G·~a = 1

~G · ~a = 2πN

where N is an integer.
We could then express ~G in basis of ~a1, ~a2 and ~a3 and search for vectors that satisfy the above condition.
But, what is usually done is that we define a new basis that has the same direction of vectors but different
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magnitudes. This is the reciprocal lattice vector basis and the vectors can be derived from the original
basis vectors as follows (in 3D)

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)

~b2 = 2π
~a3 × ~a1

~a1 · (~a2 × ~a3)

~b3 = 2π
~a1 × ~a2

~a1 · (~a2 × ~a3)

The important property of these vectors is that they have the directions of original basis. This can be
shown for each vector explicitly

~b1 · ~a1 =
2π

~a1 · (~a2 × ~a3)
(~a2 × ~a3) · ~a1 = 2π

Denoting ~a1 · (~a2×~a3) = V as the volume of the unit cell (which it indeed is), we have for other two vectors

~b1 · ~a2 =
2π

V
(~a2 × ~a3) · ~a2

Since ~a2 × ~a3 ⊥ ~a2 (property of vector product)

~b1 · ~a2 = 0

Similarly

~b1 · ~a3 =
2π

V
(~a2 × ~a3) · ~a3 = 0

And similarly for other reciprocal lattice vectors

~b2 · ~a1 =
2π

V
(~a3 × ~a1) · ~a1 = 0

~b2 · ~a2 =
2π

V
(~a3 × ~a1) · ~a2 =

2π

V
~a1 · (~a2 × ~a3) = 2π

where I used a cyclic permutation.

~b2 · ~a3 =
2π

V
(~a3 × ~a1) · ~a3 = 0

~b3 · ~a1 =
2π

V
(~a1 × ~a2) · ~a1 = 0

~b3 · ~a2 =
2π

V
(~a1 × ~a2) · ~a2 = 0

~b3 · ~a3 =
2π

V
(~a1 × ~a2) · ~a3 =

2π

V
~a1 · (~a2 × ~a3) = 2π

Therefore, we can summarize our findings as

~bm · ~an = 2πδmn

where δmn is the Kronecker delta. Using this definition, we can find the value of the triple product
~b1 · (~b2 ×~b3). We start with the inner vector product

~b2 ×~b3 =
(2π)2

V 2
(~a3 × ~a1)× (~a1 × ~a2) =

(2π)2

V 2
([(~a3 × ~a1) · ~a2]~a1 − [(~a3 × ~a1) · ~a1]~a2) =

=
(2π)2

V 2
[~a1 · (~a2 × ~a3)]~a1 =

(2π)2

V
~a1

and

~b1 · (~b2 ×~b3) =
(2π)2

V
~b1 · ~a1 =

(2π)3

V

which is the volume of the reciprocal lattice unit cell.
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If we look at this and previous equation, we can see that

~a1 =
V

(2π)2
(~b2 ×~b3) = 2π

~b2 ×~b3
(2π)3

V

= 2π
~b2 ×~b3

~b1 · (~b2 ×~b3)

Similarly for other vectors

~b3 ×~b1 =
(2π)2

V 2
(~a1 × ~a2)× (~a2 × ~a3) =

(2π)2

V 2
(((~a1 × ~a2) · ~a3)~a2 − ((~a1 × ~a2))~a2)~a3 =

=
(2π)2

V
~a2

~a2 = 2π
~b3 ×~b1

~b1 · (~b2 ×~b3)

~b1 ×~b2 =
(2π)2

V 2
(~a2 × ~a3)× (~a3 × ~a1) =

(2π)2

V 2
(((~a2 × ~a3) · ~a1)~a3 − ((~a2 × ~a3) · ~a3)~a1) =

=
(2π)2

V
~a3

~a3 = 2π
~b1 ×~b2

~b1 · (~b2 ×~b3)

Hence the inverse transforms are exactly identical to the forward transforms, hence why we call the lattice
reciprocal - applying the transform twice gives back the original lattice and the vectors have dimensions
that are reciprocal dimensions of the original lattice.
To end our thought, all ~G vectors must be then sum of integer multiples of the reciprocal lattice vectors,
as (for ~G = h~b1 + k~b2 + l~b3)

~G · ~a =

3∑
i=1

h~b1 · ~ai + k~b2 · ~ai+1 + l~b3 · ~ai+2

where cyclic permutation a4 → a1 occurs. Hence

~G · ~a = 2π(h+ k + l)

which is an integer multiple of 2π, which is what we originally required.

5.3 Bragg Diffraction and Miller Indices

Integers h, k and l are called the miller indices. Each vector in the reciprocal lattice can be then defined
using only these three indices, hence ~G = ~Ghkl. Also, such a vector defines a plane in the reciprocal
lattice. This plane is also a plane in the real lattice, as basis vectors of reciprocal lattice and real lattice
are respectively parallel.
When X-Rays (or other waves) scatter from these planes, Bragg diffraction occurs. The Bragg diffraction
has maxima at

mλ = 2 sin θdhkl

where m is an integer, λ is wavelength of the incident wave, θ is the angle of incidence and dhkl is the
distance between the planes defined by ~Ghkl which have overlaping atoms when looking in direction of
~Ghkl.
The distance must therefore also satisfy

ndhkl = Ĝhkl · ~r

where n is an integer, Ĝhkl is the unit reciprocal lattice vector and ~r is the real lattice vector.
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5.4 Nearly Free Electron Model

The crystal structure is the principal idea behind a nearly free electron model for electrons in solids. It
assumes that the variation of potential due to stationary positive ions in the lattice is relatively small. This
means that the potential can be described by a function

V (~r) =
∑
h,k,l

Vhkle
i ~Ghkl·~r

Now, for clarity, consider a 1D case. Here

V = V (x) =
∑
h

Vhe
iGhx =

∑
h

Vhe
iπhL x

where 2L is the length of the unit cell from −L to L in 1D.
If the variation in V is small, it usually means that coefficients Vh are small as well. Since the series
converges, only few first coefficients for small h. We can try to construct a primitive model where only the
first two coefficent are important, and therefore

V ≈ V1e
i 2π
a x + V−1e

−i 2π
a x = V1e

iG1x + V−1e
iG1x

Now we further assume that V−1 = V1 = V , which basically just requires that the function V is even, which
makes sense if it is centered on an atom at x = 0 (for any other function, the x direction would not be
isotropic).
We can try to find approximate eigenstates of the hamiltonian operator by using non-eigenstates which
we would expect to find. Since the perturbation of the free hamiltonian by V is small, we can try to use
plane waves to simulate this. To make the model symplest possible, we only allow two specific states with
wavenumbers k and k − G1. We use the matrix modelling to find corresponing eigenvalues of energy. We
therefore need to determine the elements of the hamiltonian matrix.

<
eikx√

2L
|Ĥ| e

ikx

√
2L

>=
1

2L

∫ L

−L
e−ikx

(
− h̄2

2m∗
∂2

∂x2
+ V eiG1x + V e−iG1x

)
eikxdx =

=
1

2L

∫ L

−L
e−ikx

(
h̄2k2

2m∗
eikx + V eix(k+G1) + V eix(k−G1)

)
dx

Because both k and G1 correspond to wavenumbers for waves periodic on −L to L in x, we have orthogo-
nality relations ∫ L

−L
e−ikxdx = 2Lδk0

where δk0 is the Kronecker delta.
Hence

<
eikx√

2L
|Ĥ| e

ikx

√
2L

>=
h̄2k2

2m∗

Similarly

<
ei(k−G1)x

√
2L

|Ĥ|e
i(k−G1)x

√
2L

>=
1

2L

∫ L

−L
e−i(k−G1)x

(
h̄2

2m∗
∂2

∂x2
+ V eiG1x + V e−iG1x

)
ei(k−G1)xdx =

=
1

2L

∫ L

−L
e−i(k−G1)x

(
h̄2(k −G1)2

2m∗
ei(k−G1)x + V eikx + V ei(k−2G1x)

)
dx =

h̄2(k −G1)2

2m∗

Now, for the off-diagonal elements.

<
eikx√

2L
|Ĥ|e

i(k−G1)x

√
2L

>=
1

2L

∫ L

−L
e−ikx

(
h̄2(k −G1)2

2m∗
ei(k−G1)x + V eikx + V ei(k−2G1)x

)
dx = V

<
ei(k−G1)x

√
2L

|Ĥ| e
ikx

√
2L

>=
1

2L

∫ L

−L
e−i(k−G1)x

(
h̄2k2

2m∗
eikx + V ei(k+G1)x + V eikx

)
dx = V

Hence the matrix is

H =

(
h̄2k2

2m∗ V

V h̄2(k−G1)2

2m∗

)
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Lets mark Ek = h̄2k2

2m∗ and consistently with this also Ek−G1
= h̄2(k−G1)2

2m∗ . To find the eigenvalues∣∣∣∣ Ek − λ V
V Ek−G1 − λ

∣∣∣∣ = 0

(Ek − λ)(Ek−G1
− λ)− V 2 = 0

λ2 − (Ek + Ek−G1
)λ+ EkEk−G1

− V 2 = 0

λ =
Ek + Ek−G1

2
± 1

2

√
(Ek + Ek−G1

)2 − 4(EkEk−G1
− V 2)

λ =
Ek + Ek−G1

2
±

√(
Ek − Ek−G1

2

)
+ V 2

Thus for states with similar Ek and Ek−G1
(states around k = G1

2 ), the difference of energies of the two
states is 2V , which is purely material dependent and finite. This means that the electrons cannot transfer
between these two states, and hence cannot change direction without requiring energy.
But, conduction in materials occurs by swaping the direction of the momentum but not changing the energy
of the electrons much. In this case, some wavenumbers cannot change the momentum without the change
in energy - they must climb certain energy gap.
Proper treatment leads to the formalism of bands and gaps.

5.4.1 Bands and Gaps

The electrons in solids that have some periodic disruptive potential acting on the electrons stimulate the
creation of electron bands. These bands are intervals of allowed wavenumbers which have small separation

in energy (by ∆E = h̄2π2

2m∗L2 ). Between these bands, the band gaps are present, where electrons with given
wavenumbers and energies do not exist.
Further high in energy, electrons with some wavenumbers and higher energies occur again.
When conduction occurs, it slightly shifts the wavevectors in some direction, while slightly increasing the
energy. But for materials that have big band gap and filled band with lower energy, the electrons would
have to overcome the band gap energy barrier to conduct, which very hard.
Effectively, the electric potential then pushes against the degeneracy pressure of the electrons, which is
very strong.

6 Semiconductors

Semi-conductors are materials which have filled or nearly filled bottom electron band. This means that
only very few electrons that overcome the band gap due to thermal excitations can conduct.
The number of these conductive electrons is given by Boltzmann distribution as (assuming only the electrons
close to the band gap starting energy)

Ne = N0e
− ∆
kBT

where ∆ is the width of the energy band gap and N0 is some number of electrons close to the energy gap.
We do not really need this number, and therefore we will just write that

Ne ∝ e−
∆
kBT

However, this electron that gets excited to the higher band (usually called the conduction band) leaves
behind effectively a free spot (free wavevector value) which can be filled by an electron of higher energy.
This empty spot is often called a hole and in fact behaves as a quasi-particle. Imagine that we plot the
electron energies on a vertical axis. Then, while the electron tries to flow down the axis to minimise its
energy, the hole needs to flow up to minimize the energy of the other electrons which sequentially take its
place.
This hole therefore always drifts to the top of the lower band (usually called the valence band). The hole
can conduct in this conduction band, and thus the total number of conducting particles is

N = Ne +Nh = 2Ne = 2N0e
− ∆
kBT
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6.1 Doping

We can artificially add other elements to the semiconductor to change its conductive properties. For a
semiconductor with four valence electrons (Si or Ge), we could add either Al (3 valence electrons) or As/P
(five valence electrons). These atoms get implemented in the crystal structure of the semiconductor, and
thus either have one stable electron extra (for 3 valence electrons elements ) or one less (for five valence
electrons). Also, they create a permanent hole/electron that can conduct and is not caused by thermal
excitation.
Consider now the case of 3 valency element. The extra electron that is bound to the element creates
effective fixed negative charge, and therefore the energy of this fixed electron is slightly higher than the
energy of other electrons from the semiconductor. Therefore, the Fermi energy of the semiconductor is
shifted up by this electron, sitting small amount of energy above the valence band.
Analogously, the positive static 5 valency element still attracts the electron a little bit (they form so called
exciton pair). This means that the electron connected to this element has slightly lower energy than the
other electrons from the semiconductor. Since the electron from this atom goes directly to the conduction
band, the Fermi energy of such doped semiconductor lies a small bit under the bottom of the conduction
band.
Summarizing, we have two possibilities for doping. Either we dope with 5 valency elements, putting extra
electrons into the system, which can conduct, while increasing the Fermi energy just under the conduction
band, or dope with 3 valency elements, putting extra holes into the system and increasing the Fermi energy
slightly above the valence band. The first type of doping is the n-doping, the second is p-doping (by charge
of the doped charge carrier/ also called the majority carrier).

6.2 Aligning Materials

When the materials are aligned, the stable state is achieved when their Fermi energies are aligned. This
might cause some initial electron flux, but the stable state is alignment of the Fermi energies.
Therefore, if we put together one p-doped (p-type) and n-doped (n-type) semiconductor, the bands align
in such a way that the bottom of the conduction band of the n-type is almost aligned with the top of
the valence band of the p-type (difference due to interaction energies of excitons - static positive/negative
charge).
In such settings, the electron that gets to the conduction band of the p-type material quickly travels to the
top of the conduction band of the n-type material, as the bottom of the conduction band in the n-type is
now much lower. Similarly, any hole present in the n-type quickly travels to the p-type, as it can bubble
up through the electrons.
The number of electrons that get excited to the conduction band of the p-type per time is

ne0 ∝ e−
∆
kBT

similarly, the number of holes created by excitation of the electrons in the n-type material is

nh0 ∝ e−
∆
kBT

In a steady state solution, these numbers are aligned, so

ne0 = nh0

or, by multiplying by charge e and taking the current in direction from n-type to p-type, we have

ie0 = ih0

Hence the total current (of positive charge) flowing from n-type to p-type in the thermal equilibrium is

I0 = ih0 + ie0 = 2ih0

This current is also called the generation current.
This would imply that there is always some non-zero current, which does not occur in reality, because there
is one more type of current that can occur. The electrons from the n-type that sit in the conduction band
have non-zero probability of climbing the potential to conduction band in the p-type. The potential they
climb is approximately ∆, so the current will be again

ier ∝ −e−
∆
kBT
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where minus sign stands for the electrons travelling in n→ p direction and having negative charge. Similarly,
holes can climb the potential down to the n-type with the same probability. Hence

Ir = −ihr − ier = −2ihr

In thermal equilibrium, there is no net current, so we must have

Ir + I0 = 0

or
ihr = ih0

and
ier = ie0

The Ir current is also called the recombination current, as the electrons/ holes arriving to the opposite
type material quickly recombine and anihilate.

6.3 Conduction

Now, imagine biasing the n-type with voltage V . This shifts the energy of electrons in the n-type by eV
up, thus the electrons/holes from the recombination current must only climb potential difference of ∆− eV
now, so

Ir = Ir,eqe
− (−eV )

kBT = Ir,eqe
eV
kBT

where Ir,eq is the recombination current in equilibrium.
The generation current remains the same as in equilibrium

Ig = Ig,eq = −Ir,eq

Hence the total current across the junction is

I = Ig + Ir = Ir,eq

(
e
eV
kBT − 1

)
which is the familiar behaviour of a diode.
The last remark should be made on recombination. The recombination is followed by decrease in energy of
the electron, which needs to be radiated away. In order to be radiated away (by a photon), the transition
must be allowed by selection rules (conservation of angular momentum). As it turns out, in silicon, the
selection rules forbid most recombination transitions crossing the band gap. This caused problems as the
pile up of electrons stopped the current from flowing. It then took longer for people to pursue this research,
hence why we discovered semiconductor devices so late.

7 Standard Model

7.1 Klein-Gordon Equation

The quantum mechanics as we derived it so far has one major problem - it is not special relativistic theory.
To incorporate a special relativity into the theory, we need to use principle of correspondence to find some
relativistic quantum equation and some principle from non-relativistic quantum mechanics to be consistent
with this new equation in order for the new theory to be consistent with the old theory.
Motivations to discover this theory are mainly particle physics and explanations of some foreign concepts,
such as spin or antiparticles.
Historically, the Klein-Gordon equation was the first try to do this. It can be derived from the relativistic
expression for total energy

E2 = p2c2 +m2c4

Replacing the variables with corresponding operators (and mass with just multiplication by mass)

−h̄2 ∂
2

∂t2
Ψ = −h̄2c2∇2Ψ +m2c4Ψ

We can try to scale the units so that all variables are in in terms of energy, i.e.

t′ =
t

h̄
, x′ =

x

h̄c
,m′ = mc2
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These are called the natural units and I will drop the prime in the following section. The Klein-Gordon
equation in natural units then becomes

∂2

∂t2
Ψ−∇2Ψ +m2Ψ = 0

(
∂2

∂t2
−∇2 +m2

)
Ψ = 0 (48)

This is the Klein-Gordon equation. To make connection to the non-relativistic quantum mechanics, we
would like some form of probability density to be derivable from this equation. The probability density
should also satisfy the continuity equation

∂ρ

∂t
= −∇ ·~j

where ~j is some flux density and ρ is the probability density. We found this equation originally by taking
a complex conjugate of TDSE and comparing to the original, so we can try to do the same thing here.
Taking complex conjugate

∂2

∂t2
Ψ∗ −∇2Ψ∗ +m2Ψ2 = 0

Now, we multiply the new equation by Ψ and the original equation by Ψ∗, and thus obtain

Ψ
∂2

∂t2
Ψ∗ −Ψ∇2Ψ∗ + Ψm2Ψ∗ = 0 (49)

Ψ∗
∂2

∂t2
Ψ−Ψ∗∇2Ψ + Ψ∗m2Ψ = 0 (50)

As before, we can subtract (49) from (50) to get

Ψ∗
∂2

∂t2
Ψ−Ψ

∂2

∂t2
Ψ∗ −Ψ∗∇2Ψ + Ψ∇2Ψ∗ = 0

Consider that

∂

∂t

(
Ψ∗

∂

∂t
Ψ−Ψ

∂

∂t
Ψ∗
)

=
∂

∂t
Ψ∗

∂

∂t
Ψ + Ψ∗

∂2

∂t2
Ψ− ∂

∂t
Ψ
∂

∂t
Ψ∗ −Ψ

∂2

∂t2
Ψ∗ = Ψ∗

∂2

∂t2
Ψ−Ψ

∂2

∂t2
Ψ∗

and
∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) = ∇Ψ∗ · ∇Ψ + Ψ∗∇2Ψ−∇Ψ · ∇Ψ∗ −Ψ∇2Ψ∗ = Ψ∗∇2Ψ−Ψ∇2Ψ∗

Hence we get
∂

∂t

(
Ψ∗

∂

∂t
Ψ−Ψ

∂

∂t
Ψ∗
)

= −∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗)

which is our continuity equation with ρ = Ψ∗ ∂∂tΨ−Ψ ∂
∂tΨ

∗ and ~j = Ψ∗∇Ψ−Ψ∇Ψ∗. However, this cannot
be interpreted as probability density equation, as ρ can very well be negative, which is non-sensical for
probability density.
Therefore, Klein-Gordon equation is probably not the equation we are looking for. However, lets try one
more example - try to calculate the energy of plane waves.
The plane wave will have a form like (using ωt = h̄ω t

h̄ = Et′)

Ψ = ei(
~k·~r−Et)

Pluging this into the Klein-Gordon equation

−E2Ψ + |~k|2Ψ +m2Ψ = 0

E2 = |~k|2 +m2

But, there is no clear reason why E should be a positive definite, which is again a problem. Also, the total
energy is not in any way dependent on the spin of the particle, which we would like it to be (at least to
provide degenerate solutions for free particle). Therefore, we need a different equation
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7.2 Dirac Equation

Dirac equation tries to be equivalent with Klein-Gordon equation but going one step deeper. Dirac equation
states that

ih̄
∂

∂t
Ψ = (~α · ~p+ βm)Ψ (51)

Or, in natural units and substituting for momentum operator

i
∂

∂t
Ψ = (−i~α · ∇+ βm)Ψ

Hence (
i
∂

∂t
+ i~α · ∇ − βm

)
Ψ = 0

Consider now operating with i ∂∂t − i~α · ∇+ βm on the equation. We get(
i
∂

∂t
− i~α · ∇+ βm

)(
i
∂

∂t
+ i~α · ∇ − βm

)
Ψ = 0

(
− ∂2

∂t2
− ∂

∂t
~α · ∇ − i ∂

∂t
βm+ ~α · ∇ ∂

∂t
+ (~α · ∇)2 + i~α · ∇βm+ iβm

∂

∂t
+ iβm~α · ∇ − β2m2

)
Ψ = 0

Assuming that neither of the operators depends explicitly on time, we derive(
− ∂2

∂t2
+ (~α · ∇)2 + im(~α · ∇β + β~α · ∇)− β2m2

)
Ψ = 0

Multiplying by −1 (
∂2

∂t2
− (~α · ∇)2 − im(~α · ∇β + β~α · ∇) + β2m2

)
Ψ = 0

This starts to look like Klein-Gordon equation. To make it look exactly, we need to require

β2 = 1

(~α · ∇)2 = ∇2

and
~α · ∇β + β~α · ∇ = 0

We can see that the last operation is hardly possible without the spatial dependence of β, which would
be very weird, since β should be associated with mass only. Dirac solved this problem by assuming that
neither β nor components of ~α are numbers, but rather that these are matrices and Ψ is a vector. Then,
the conditions are

β2 = I

where I is the identity matrix

(~α · ∇)2 =

(
α1

∂

∂x
+ α2

∂

∂y
+ α3

∂

∂z

)2

= ∇2

Which is equivalent to

α2
1

∂2

∂x2
+ α2

2

∂2

∂y2
+ α2

3

∂2

∂z2
+ (α1α2 + α2α1)

∂2

∂x∂y
+ (α1α3 + α3α1)

∂2

∂x∂z
+ (α2α3 + α3α2)

∂2

∂y∂z
= ∇2 =

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Which leads to set of conditions
α2
i = I (52)

where i ∈ {1, 2, 3} and
α1α2 + α2α1 = α1α3 + α3α1 = α2α3 + α3α2 = 0 (53)
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Therefore, pairs of components of ~α need to be anti-commutating. From the last condition (assuming no
spatial dependence of β)

~α · ∇β + βα · ∇ = 0

α1β
∂

∂x
+ α2β

∂

∂y
+ α3β

∂

∂z
+ βα1

∂

∂x
+ βα2

∂

∂y
+ βα3

∂

∂z
= 0

(α1β + βα1)
∂

∂x
+ (α2β + βα2)

∂

∂y
+ (α3β + βα3)

∂

∂z
= 0

Which again requires
αiβ + βαi = 0 (54)

Matrices obeying the numbered conditions were known and they are called the Pauli matrices.

7.3 Pauli Matrices

Pauli matrices are the following 2x2 matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
To check whether (52) is satisfied for these matrices, consider general matrix equation(

a b
c d

)2

=

(
1 0
0 1

)
= I

The square of general 2x2 matrix is(
a b
c d

)2

=

(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
Hence we have four equations

a2 + bc = 1

d2 + bc = 1

b(a+ d) = 0

c(a+ d) = 0

From the last two equations, we have two possible situations. Either a + d 6= 0 and then b = c = 0, or
a+ d = 0. In the first situation, the other two equations become

a2 = d2 = 1

And hence we have our first two solutions as (
1 0
0 −1

)
and (

1 0
0 1

)
with the first one identical to σ3 and the second one is trivial identity matrix solution. Now for the case
when a+ d = 0. This means that a = −d and a2 = d2, and therefore we are left with one equation

a2 + bc = 1

a = ±
√

1− bc

In order to keep things simple, we can search only for solutions where all coefficents are whole numbered.
One such solution is b = c = ±1, which leads to a = d = 0 and hence solution(

0 1
1 0

)

57



PX262 - Quantum Mechanics & its Applications Formulae list and derivation

which is σ1. Similarly, we could choose b = −i and c = i so we would receive still a = d = 0 and solution(
0 −i
i 0

)
which is σ2. Therefore we see that Pauli matrices are some of the roots of equation A2 = I, where A is the
unknown 2x2 matrix.
Other property we need to check is whether these matrices are anti-commutative. To check this, we carry
out the calculations explicitly

σ1σ2 =

(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)

σ2σ1 =

(
0 −i
i 0

)(
0 1
1 0

)
=

(
−i 0
0 i

)
Hence

σ1σ2 + σ2σ1 = 0

Similarly

σ1σ3 =

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
σ3σ1 =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
σ1σ3 + σ3σ1 = 0

σ2σ3 =

(
0 −i
i 0

)(
1 0
0 −1

)
=

(
0 i
i 0

)
σ3σ2 =

(
1 0
0 −1

)(
0 −i
i 0

)
=

(
0 −i
−i 0

)
σ2σ3 + σ3σ2 = 0

Hence the Pauli matrices satisfy (53). But, now, we need to find a matrix β such that it is anti-commutative
with each of the Pauli matrices. This turns out to be very hard to do in 2x2 matrices. But, we can use the
property of block multiplication of matrices to avoid this problem and solve for β and αi in 4x4 matrices.
The block multiplication states that for matrices A,B,C,D and A′,B′,C ′,D′, the following relation applies(

A B
C D

)(
A′ B′

C ′ D′

)
=

(
AA′ +BC ′ AB′ +BD′

CA′ + CC ′ CB′ +DD′

)
Hence the block multiplication of matrices can be carried out in the same way as normal matrix multiplica-
tion, but taking care of the order of operations, as matrices are not necesserily commutative. Now consider
a matric product such as (

A B
C D

)(
aI bI
cI dI

)
where A,B,C and D are matrices and I is the identity matrix and a,b,c,d are scalars. Since scalar multipli-
cation is commutative with respect to matrix multiplication and I commutes with any matrix by definition,
this block multiplication is carried out in exactly the same way as if the matrices A, B, C and D were just
some numbers and I was one.
Following this train of thought, we can construct the matrix β as one of the Pauli matrices but instead of
numbers defined above we will have these numbers multiplying identity matrix, so for example

β1 =

(
0 I
I 0

)
or

β2 =

(
0 −iI
iI 0

)
We then construct matrices α so that they are Pauli block matrix created from original Pauli matrices, so
for example

α11 =

(
0 σ1

σ1 0

)
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α12 =

(
0 σ2

σ2 0

)
or

α33 =

(
σ3 0
0 −σ3

)
Then, each element of a set Aj = {k ∈ {1, 2, 3} : αjk} where j ∈ {1, 2, 3} is guaranteed to be anti-
commutative with βi, i 6= j, since the Pauli matrices are anti-commutative. Usually, the set with i = 1 and
j = 3 is chosen, only the sign of the α matrices is switched, so we have

β = β1 =

(
0 I
I 0

)

αi = −α3i =

(
−σi 0

0 σi

)
which is guaranteed to satisfy (54). Strictly speaking, we need to check whether the αi matrices now satisfy
(52) and (53).

α2
i =

(
−σi 0

0 σi

)(
−σi 0

0 σi

)
=

(
σ2
i 0

0 σ2
i

)
=

(
I 0
0 I

)
= I4

where I4 is the 4x4 identity matrix. Now for i 6= j

αiαj =

(
−σi 0

0 σi

)(
−σj 0

0 σj

)
=

(
σiσj 0

0 σiσj

)
and similarly

αjαi =

(
σjσi 0

0 σjσi

)
and hence

αiαj + αjαi =

(
σiσj + σjσi 0

0 σiσj + σjσi

)
= 0

Therefore, we have found a set of 4x4 matrices that satisfies the given conditions on αi and β. We could
also chosen different template Pauli matrix for β and αi and we would receive the same results, but the
one mentioned above was used in lectures.
Before we move away from Pauli matrices, we quickly calculate the eigenvalues and eigenvectors of the
Pauli matrices.

7.3.1 Eigenvectors and Eigenvalues of Pauli matrices

To find the eigenvalues of σ1 ∣∣∣∣ −λ1 1
1 −λ1

∣∣∣∣ = 0

λ2
1 − 1 = 0

λ1 = ±1

So, the eigenvectors satisfy (
∓1 1
1 ∓1

)(
a
b

)
=

(
0
0

)
∓a+ b = 0

b = ±a

And so the normalized eigenvectors with corresponding eigenvalues λ = ±1 are

ê1 =
1√
2

(
1
±1

)
Similarly for σ2 ∣∣∣∣ −λ2 −i

i −λ2

∣∣∣∣ = 0
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λ2
2 − 1 = 0

λ2 = ±1

which are the same eigenvalues as for σ1. So the eigenvectors(
∓1 −i
i ∓1

)(
a
b

)
=

(
0
0

)
∓a− ib = 0

ib = ∓a

b = ±ia

And thus

ê2 =
1√
2

(
1
±i

)
Finally, for σ3 ∣∣∣∣ 1− λ3 0

0 −1− λ3

∣∣∣∣ = 0

(λ3 − 1)(λ3 + 1) = 0

λ3 = ±1

Again, same as in the previous two cases. For the eigenvectors(
1∓ 1 0

0 −1∓ 1

)(
a
b

)
=

(
0
0

)
This gives as two equations

(1∓ 1)a = 0

and
(−1∓ 1)b = 0

(1± 1)b = 0

These are separately satisfied if a = (1 ± 1)c and b = (1 ∓ 1)d, where c and d are some numbers. The
normalized eigenvectors are therefore

ê3 =
1

2

(
1± 1
1∓ 1

)
In summary, the eigenvalues of the Pauli matrices are always λ = ±1 and the eigenvectors are as follows

ê1 =
1√
2

(
1
±1

)
, ê2 =

1√
2

(
1
±i

)
, ê3 =

1

2

(
1± 1
1∓ 1

)

7.4 Dirac Equation in the Rest Frame of the Particle

We have determined matrices αi and β and therefore the Dirac equation is complete as(
i
∂

∂t
+ i~α · ∇ − βm

)
Ψ = 0

Since each component of ~α and matrix β are all 4x4 matrices, the wavefunction becomes a vector with four
components

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4


which is usually called the Dirac spinor. It is not shown here, but the Dirac equation can be shown to
satisfy the continuity equation with flux density

~j = (ΨT )∗~αΨ
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and probability density
ρ = (ΨT )∗βΨ

Now, we want to find whether there are spins present in the theory. This should be visible from the model
of a particle in its rest frame (and in fact, all physical properties could be determined in the rest frame and
then just transformed by Lorentz transformations to any other frame). In the rest frame of the particle,
the particle has no momentum, and therefore the Dirac equation becomes(

i
∂

∂t
− βm

)
Ψ = 0 (55)

Now we try to look for plane wave solutions in a form of

Ψ = ~ae−iEt =


a1

a2

a3

a4

 e−iEt

The Dirac equation for these solutions is

i
∂

∂t
~ae−iEt = mβ~ae−iEt

mβ~ae−iEt = E~ae−iEt

(β − E

m
I4)~a = 0

Hence amplitude spinors ~a are the eigenvectors of β matrix. To find the eigenvalues and eigenvectors

|β − E

m
I4| = 0∣∣∣∣ −E

mI I
I −E

mI

∣∣∣∣ = 0

| − E

m
I|| − E

m
I| − |I||I| = 0

Since |I| = 1
E2

m2
− 1 = 0

E

m
= ±1

E = ±m

Hence the total energy is the rest mass, but potentially negative. The negative total energy was then
interpreted by Dirac as the antiparticle, which will be discussed later.
The eigenvectors satisfy (

∓I I
I ∓I

)
a1

a2

a3

a4

 =


0
0
0
0


Which leads to two separated equations

∓a1 + a3 = 0

∓a2 + a4 = 0

Since we do not search for trivial eigenvectors a1 = a2 = a3 = a4 = 0, we can construct two pairs of
normalized eigenvectors

~a1 =


1
0
±1
0


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and

~a−1 =


0
1
0
±1


Since both ~a1 states have the energy equal to m, we can interpret them as the states of the normal particle
in rest frame, where the two states are possible to account for the spin degeneracy - two possible spin
orientations.
Similarly, ~a−1 are two states of the anti-particle with opposite spins.
And what about the negative energies? Dirac suggests that a field of possible states fills the space with
state energies going approximately as E =

√
p2 +m2 for particles and E∗ = −

√
p2 +m2 for anti-particle

states. The reason why the particles do not simply occupy the states E∗ is because we assume that all
states E∗ are occupied. Then, if we excite a particle from this state, a hole appears with the negative
energy, that can anihilate with the original particle and has an effective positive charge. This behaviour
was a good description of positron particle - the anti-particle of the electron.
However, this description requires the whole vacuum to be filled with some massive particles, which is a bit
problematic. The standard model gets around this by assuming that all particles are in fact massless and
their mass originates from the interaction with the Higgs field. However, massless particles do not have a
rest frame, therefore they need to be treated separately.

7.5 Dirac Equation for Massless Particles

For massless particles, the Dirac equation becomes

(i
∂

∂t
+ i~α · ∇)Ψ = 0

Assuming that the solutions are plane waves of form (and using ~k · ~r =
~(p′)
ch̄ · ~r = ~(p′) · ~(r′))

Ψ =


a1

a2

a3

a4

 ei(~p·~r−Et)

we have
EΨ = −i~α · ∇Ψ

EΨ =

(
i~σ · ∇ 0

0 −i~σ · ∇

)
Ψ

where

~σ =

 σ1

σ2

σ3


This equation clearly separates into to equations, one for

ΨL =

(
a1

a2

)
ei(~p·~r−Et)

and second for

ΨR =

(
a3

a4

)
ei(~p·~r−Et)

as
EΨL = i~σ · ∇ΨL

and
EΨR = −i~σ · ∇ΨR

The first equation becomes explicitly

EΨL = i~σ · ∇ΨL = i

(
σ1

∂

∂x
+ σ2

∂

∂y
+ σ3

∂

∂z

)
~aLe

i(~p·~r−Et) = i (σ1ipx + σ2ipy + σ3ipz)~aLe
i(~p·~r−Et)
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E~aL = − (σ1px + σ2py + σ3pz)~aL

E~aL = −
[(

0 px
px 0

)
+

(
0 −ipy
ipy 0

)
+

(
pz 0
0 −pz

)]
~aL = −

(
pz px − ipy

px + ipy −pz

)
~aL

Hence [(
pz px − ipy

px + ipy −pz

)
+ EI

]
~aL

which is an eigenvalue equation for eigenvalue (−E). Hence∣∣∣∣ E + pz px − ipy
px + ipy E − pz

∣∣∣∣ = 0

(E + pz)(E − pz)− (px − ipy)(px + ipy) = 0

E2 = p2
x + p2

y + p2
z

Hence

E = ±
√
p2
x + p2

y + p2
z = ±|~p|

this has common interpretation of particle for E = |~p| and anti-particle for E = −|~p|. The eigenvectors
satisfy (

pz ± |~p| px − ipy
px + ipy −pz ± |~p|

)(
a1

a2

)
=

(
0
0

)
(px + ipy)a1 − (pz ∓ |~p|)a2 = 0

a2 =
px + ipy
pz ∓ |~p|

Hence

~aL =

(
1

px+ipy
pz∓|~p|

)
This is for |~p| 6= pz. In case when |~p| = pz, which implies that px = py = 0, we have(

pz ± pz 0
0 −pz ± pz

)(
a1

a2

)
=

(
0
0

)

And eigenvectors are

(
0
0

)
and

(
0
1

)
.

Similarly for the second part of spinor
EΨR = −i~σ · ∇ΨR

E~aR =

(
pz px − ipy

px + ipy −pz

)
~aR

Which means that the eigenvectors are the same, but eigenvalues are switched.
The particles with ~aR eigenvectors are called the right-handed particles, those with ~aL are called the left
handed. The particles with the negative total energy remain the anti-particles.

7.6 Forces in Standard Model

Forces in standard model are modelled as particle trasfer between interacting particles. The particles
mediating this interaction are called the gauge bosons. For electromagnetic force, the gauge boson is photon.
For weak interaction, there are three gauge bosons - so called vector bosons. For strong interaction, there
are 8 gluons, each identical but bearing a different set of colour+anti-colour , with one combination being
prohibited. We do not speak about gravity.
For us, we can use Feynmann diagrams to qualitatively describe the interactions of the particles with their
gauge bosons. The quantity that we will be deriving from these diagrams is mainly the probability of
certain process. This probability is always proportional to the strength of coupling of the particle to the
force field (by some coupling constant) and the propagation term of the gauge boson, squared. See figure
below for an example.
To estimate α, we consider the maximum energy transfered by the photon.
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Figure 2: The Coulomb interaction - repulsion of two electrons. The probability of this process is propor-
tional to the square of the probability amplitude of this process. The probability amplitude is proportional
to the product of probability amplitudes of the separate processes in this diagram. The processes are
emission of photon (proportional to coupling constant α), propagation of photon (only decreasing as a free
radial wave - as 1

r ), and absorption of photon (again, proportional to α). Hence the probability amplitude

is proportional to α2

r and interaction probability to α4

r2 .

Since the photon is emmited from essentially nothing in the rest frame of the emmiting electron, it has to
be constrained by the Heisenberg uncertainty principle (generalized) as

Eγ∆t ≈ h̄

where ∆t is the time of the existence of photon, and hence the time of propagation of photon. As the
photon moves at the speed of light

Eγ
r

c
= h̄

Eγ =
ch̄

r
=

1

r′

Hence the coupling constant should be the ratio between the potential energy of the two electrons and the
energy that would be used to exchange photon between them

α =
Ep
Eγ

=
e2

4πε0r

r

ch̄
=

e2

4πε0ch̄
≈ 1

137

α is also sometimes called the fine structure constant. We have seen that we could define the energy of the
photon in terms of natural units as 1

r′ . We could also similarly define the charge as a dimensionless number
using the potential energy of the electrons as

(e′)2

4πr′
=

e2

4πε0r

e′ = e

√
1

ε0h̄c

Which also leads to

α =
(e′)2

4π

and interaction probability amplitude as α2

r′ . From now on, I will again drop the primes.
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7.6.1 Weak Force

Weak force is specific by having massive gauge bosons. This means that the energy trasfered by the gauge
boson is usually smaller than its mass. This means that the boson is effectively imaginary. The radial wave
of the massive boson is proportional to

ΨW ∝
eipr

r
=
ei
√
E2−m2r

r
=
e−
√
m2−E2r

r

And for E much smaller than m

ΨW ≈
e−mr

r

Which is much smaller than for the electromagnetic force. In fact, the electromagnetic force can be viewed
as the limit of the weak force at gauge boson mass m→ 0.
The coupling constant of the electroweak force is usually labeled g2 and satisfies

g2
2 =

e2

sin2 θW
=

4πα

sin2 θW

This means that the weakness of the force is not in the coupling constant - the coupling constant is bigger
than α. The weakness is simply in the range of the force and in the propagation term.
Experimentally, the angle θW could be determined from the events involving the Z0 vector boson, which
mediated some weak processes of neutral particles, and thus did not get obstructed by the electromagnetic
force. This meant that the g2 could be determined and from probabilites of β decays (which are weak force
processes), the mass of the vector bosons could be established. It was later measured at CERN pp̄ collider

as 80 GeV
c2 for W± and 90 GeV

c2 for Z0.
With this value, we can try to estimate the range of the weak force, which is dominated by the exponential
term.
The range of the force in natural units is approximately

R′ =
1

m′

Hence in laboratory units
R

h̄c
=
mc2

R =
h̄

cm
≈ 2× 10−18 m = 2× 10−3 fm ≈ 2.4× 10−3Rp

where Rp is the wavelength of the proton in the nucleus (effective radius of the proton in the nucleus).
Therefore, the weak force has very small range and can be for most purposes modeled as a delta potential
force.

7.6.2 Fermi Weak Delta Force

Fermi’s model for the weak force states that the probability of the weak interaction happening at position
~r is

ΨW,F = 4
√

2GF δ
3(~r)

where GF is the Fermi coupling constant. We can relate this constant to the real probability amplitude of
the process, integrated over all space ∫

V

ΨW,F dV =

∫
V

g2
2

4π

e−mr

r
dV

where the 4π factor is due to normalization. Using spherical polar coordinates

4
√

2GF =

∫ ∞
0

g2
2

4π

e−mr

r
r2dr

∫ π

0

∫ 2π

0

sin θdφdθ = g2
2

∫ ∞
0

1

4π
re−mrdr4π = g2

2

∫ ∞
0

re−mrdr

Using substitution r = x
m

4
√

2GF =
g2

2

m2

∫ ∞
0

xe−xdx =
g2

2

m2

([
−xe−x

]∞
0

+

∫ ∞
0

e−xdx

)
=

g2
2

m2

[
−e−x

]∞
0

=
g2

2

m2
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Hence

m2 =
g2

2

4
√

2GF
=

4πα

4
√

2GF sin2 θW
=

πα√
2GF sin2 θW

This is what was also originally used to estimate the masses of vector bosons, as GF was measured from
fits of experiments and θW was known.

7.6.3 Strong Force

Strong force is mediated by gluons and has many perculiar properties. For example, it gets generally
stronger over longer distance - it works like spring. But, since gluons them selves have a colour, the overall
effect is decreasing with distance.
This force creates problems when modelling it, because we cannot use perturbation theory - cannot assume
that the potential energy at infinity is zero. The model coupling constant of the strong force is

αs =
gs
4π

=
4π

(11− 2
3nf ) ln

(
Q2

Λ2

)
where nf = 6 is the number of flavours of quarks, Q is the momentum transferred by the gluon (and thus
distance is ∝ 1

Q , by HUP) and Λ is some parameter. We need coupling constant to be positive, otherwise
there might be negative probabilites of events, which are not defined.
Thus we need Q ≥ Λ to be able to model it. The obscure region of the strong force than starts at distances
about Λ ≈ 1 fm, which is about the size of the proton.

7.7 Flavour Oscillations

A surprisingly common phenomena in particle physics is the phenomena of flavour oscillations. This is
caused by particles interacting with the weak force somehow and changing the flavour as they travel
through space. This behaviour can be modelled in our matrix formalism. The observable states are the
flavour states of the particle, while the energy eigenstates are unknown, but the mixing hamiltonian matrix
is provided as a model with some free parameters that are then fitted from the experiment.

7.7.1 K Meson Oscillations

For vector of flavour states amplitudes

(
aK0

aK̄0

)
, the hamiltonian matrix has form

(
m0 − iΓ

2 m12 − iΓ12

2

m∗12 − i
Γ∗12

2 m0 − iΓ
2

)
Which can be reexpressed as

H =

(
m0 − iΓ

2 p2

q2 m− iΓ
2

)
The eigenvalues follow from

H =

(
0 p2

q2 0

)
+

(
m0 −

Γ

2

)
I = A +

(
m0 −

Γ

2

)
I

where I is the identity matrix. The eigenvalues of A satisfy∣∣∣∣ −λ p2

q2 −λ

∣∣∣∣ = λ2 − p2q2 = 0

λ = ±pq

Hence the eigenvalues of H are m0 − Γ
2 ± pq. The eigenvectors satisfy(
∓pq p2

q2 ∓pq

)(
b
c

)
=

(
0
0

)
∓pqb+ p2c = 0

c = ±q
p
b
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Hence, the normalized eigenvectors are

b̂± =
1√

|p|2 + |q|2

(
p
±q

)
The Schrödinger equation is

i
∂

∂t

(
aK0

aK̄0

)
=

(
m0 − Γ

2 p2

q2 m0 − Γ
2

)(
aK0

aK̄0

)
These vectors can be rewritten as (

aK0

aK̄0

)
= aK0

(
1
0

)
+ aK̄0

(
0
1

)
Here (

1
0

)
=

√
|p|2 + |q|2

2p

[
1√

|p2|+ |q|2

((
p
q

)
+

(
p
−q

))]
=

√
|p|2 + |q|2

2p

(
b̂+ + b̂−

)
Similarly (

0
1

)
=

√
|p|2 + |q|2

2q

(
b̂+ − b̂−

)
And thus (

aK0

aK̄0

)
=
√
|p|2 + |q|2

(
aK0

2p
(b̂+ + b̂−) +

aK̄0

2q
(b̂+ − b̂−)

)
(
aK0

aK̄0

)
=
√
|p|2 + |q|2

(
aK0

2p
+
aK̄0

2q

)
b̂+ +

√
|p|2 + |q|2

(
aK0

2p
−
aK̄0

2q

)
b̂−

Hence the Schrödinger equation is

i
∂

∂t

(
aK0

2p
+
aK̄0

2q

)
b̂+ + i

∂

∂t

(
aK0

2p
−
aK̄0

2q

)
b̂− =

=

(
aK0

2p
+
aK̄0

2q

)(
m0 − i

Γ

2
+ pq

)
b̂+ +

(
aK0

2p
−
aK̄0

2q

)(
m0 − i

Γ

2
− pq

)
b̂−

Since the eigenvectors of energy are constant in time, we can separate this equation into two equations for
the amplitudes. The first (for b̂+)

i
∂

∂t

(
aK0

(t)

2p
+
aK̄0

(t)

2q

)
=

(
m0 − i

Γ

2
+ pq

)(
aK0

(0)

2p
+
aK̄0

(0)

2q

)
Hence (

aK0
(t)

2p
+
aK̄0

(t)

2q

)
=

(
aK0

(0)

2p
+
aK̄0

(0)

2q

)
e(−im0−ipq−Γ

2 )t

And similarly (
aK0

(t)

2p
−
aK̄0

(t)

2q

)
=

(
aK0

(0)

2p
−
aK̄0

(0)

2q

)
e(−im0+ipq−Γ

2 )t

Now imagine that the particle was prepared as K0, i. e. aK̄0
= 0. Then

aK0

p
=
aK0

p
e(−im0−Γ

2 )t (e−ipqt + eipqt
)

And hence the probability of observing the particle at sime time t is

aK0
(t)a∗K0

(t) = |aK0
(0)|2e−Γt

(
eipqt + e−ipqt

) (
e−ip

∗q∗t + eip
∗q∗t
)
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