
PX366 - Statistical Physics Revision Guide

Before I start with true content of the module, I go more into depth about some of the aspects of classical
thermodynamics and statistical mechanics.

1 Classical Thermodynamics

In thermodynamics, we are trying to describe systems which are composed of many individual particles,
with hope that the overall behaviour of the particles can be described by a small number of observable
variables.
A special case of these systems are systems in equilibrium, for which we assume now macroscopic variables
can change over time and no macroscopic currents are present in the system.
The variables we use to describe the can be usually characterized as two categories - extensive and intensive.
Extensive variables are directly proportional to the system size. These are for example volume, energy or
number of particles in the system. The intensive variables, on the other hand, are independent of the
system size. An example of intensive variable could be temperature, pressure or chemical potential.
These two types create so called conjugate pairs, as will be discussed later.

1.1 Laws of Thermodynamics

The thermodynamics are based on set of laws that are either very fundamental physical concepts or statis-
tically almost observations. These laws are now presented

1.1.1 Zeroth Law

Suppose that we have three systems - A, B and C. If we create connection between A and B and observe
that they are in equilibrium (no change in observables and no appearance of currents), then disconnect
them and connect A and C to observe equilibrated state as well, then we can infer that B and C are in
equilibrium with each other.
This can be formulated as the transitive property of the equilibrium state, and can be used to de�ne
some observables. For example, if we connect the systems so that they can exchange energy in form of
heat, we can de�ne an intensive property of the system called temperature and say that two systems are
in equilibrium if they have the same temperature. If we connect the systems so that they can exchange
particles, we can de�ne chemical potential and say that two systems are in equilibrium if the chemical
potential of the system is the same etc.

1.1.2 First Law

There is a variable called the internal energy of the system U which is only a function of the current state
of the system. This means that the energy of the system does not depend on the path the system took
in the past - U is memoryless. In fact, in thermodynamics, we de�ne several so called variables of state
(or functions of state, or just state variables) which all share the property that they describe memoryless
properties of the system.
The internal energy of the system must obey the energy conservation. Therefore, if there is a 
ux of energy
into the system �Q and the system does work �W between two very similar states, then the in�nitesimal
change in the internal energy is

dU = �Q� �W (1)

Here, we write � instead of d as the energy 
ux and work done are not state variables - they can depend
on the path the system takes.
The work done depends especially on the type of the system. For example, if the system does work by
pressure, we can consider a pressure force acting on some boundary of the system of area dA, so that the
this boundary moves distance dx. The force due to the pressure on dA is dF = pdA and the work done
by this expansion is �W = dFdx = pdAdx = pdV . Notice that p here is an intensive variable and V an
extensive variable.
Now consider a system which has chemical potential � which traps the particles inside the system. We
de�ne chemical potential as the energy the particle gains when it moves to the system �Ep = �. Since �
traps particles, � has to be negative. Then, if during some process the system releases dN particles, the
system must have done work �W = ��dN to move the particles out. The minus sign ensures that work
done is a positive quantity in this case, as the system has to do work to move the particles. Again, notice
that � is intensive and N is an extensive variable.
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Lastly, we could imagine a system with magnetic moment ~m. If we increase the surrounding magnetic
induction �eld by d ~B, we change the energy of the system by �~m � d ~B, which is equivalent as the system
doing work ~m � d ~B.
Similarly, we could come up with other processes by which the system can do work, and we would always
�nd a pair of extensive and intensive variable describing the amount of work done. This is one way how to
de�ne conjugate pairs of state variables - together, they describe the work done by the system. Of course,
generally, we can have combined processes, for which �W is the sum of the work done by di�erent pairs of
conjugate variables. I.e. for a process where both the number of particles and the volume of the system
changes, but there is no 
ow �Q of heat into the system, we could write

dU = ��W = �pdV � ~m � d ~B

1.1.3 Second Law

The second law de�nes another state variable called the entropy S. Entropy relates to the amount of
non-useful energy stored in the system. By non-useful energy I mean mostly the energy of heat, which
is the energy of the disordered motion of the particles. If we have two systems, the useful energy which
can be extracted from the other one however does not depend just on the amount of heat stored in the
�rst system, but also on the temperature di�erence between the systems. This leads to the de�nition of S
dependent not just on heat but also on the temperature.
Entropy is de�ned in terms of in�nitesimal change as

dS � �Q

T
(2)

where the equality appears for the case of reversible processes. The reversible process means a process in
which each consecutive state is in the equilibrium with the previous one.
Then, for reversible processes, we can write

�Q = TdS

and then we can rewrite the �rst law of thermodynamics as

dU = TdS � pdV + �dN � ~m � d ~B (3)

From (2), we can see that if we increase the size of the system by �, the heat 
ow into the system increases
as � as well (the heat energy stored is an extensive variable), while the temperature does not change (it is
an intensive variable). This implies that S is an extensive variable as well.
This also means that until the system reaches the state when all processes are in equilibrium, entropy has
to increase. Therefore, systems evolve by principle of maximizing entropy.

1.1.4 Third Law

Third law of thermodynamics states that as we approach absolute zero temperature, the entropy of the
system approaches zero as well, i.e.

lim
T!0

S = 0

We will not discuss this law much in this module.

1.2 Legendre Transformations

Suppose we have determined the entropy as a function of some extensive state variable, i.e. S = S(V ).
This would help us describe the behaviour of the system in terms of its volume, but we might be more
interested in describing the system in terms of its pressure, p. Our �rst guess would be simply �nd p as a
function of V and then �nd S = S(V (p)) to �nd S(p). We can �nd p from (3) as

p = T

�
@S

@V

�
N;~B;U

We could then invert this equation to �nd V as a function of p and substitute this back into the S de�nition
to get S(p). However, this process is unrecoverable in a sense that once we translate to S(p), we might
loose some information about S.
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1.2.1 Loss of Information

To illustrate this, consider an an entropy in form

S(V;N) = kB log(�V + 
N)

where �, � and kB are constants. Suppose also that the system is described by a state equation of form�
@S

@V

�
U;N

= C(V;N)

�
@S

@N

�
U;V

Which evaluates to
�kB

�V + �N
= C(V;N)

�kB
�V + �N

� = �C(V;N)

Now, we might want to describe S in terms of p. From �rst law of thermodynamics in zero magnetic �eld,
we know

p

T
=

�
@S

@V

�
U;N

=
kB

�V + 
N
�

p =
�kBT

�V + 
N

Therefore, we can write

S = kB log

�
�kBT

p

�

But, now we have lost any indication of N from this new S. Therefore, we cannot determine the equation
of state without the knowledge of p(V ), or we might even make a mistake and determine the equation of
state as

@S

@V
= C(V;N)

@S

@N
= 0

as we would see that our new S(p) does not depend on S. In order to prevent this loss of information and
possibility of desinterpreting the physics, it is more useful to formulate a new state equation for the system
we describe by p, which will use a new function of state F , di�erent from S, that will prevent the loss of
information. This function F is called the Legendre transform of S.
The basic problem is that as we take the derivative to determine p, any information about the o�set of S
in a S-V diagram is lost. We can however retain the information about the o�set through the speci�cation
of the intersect of a line tangent to S-V curve for constant N with the S axis. This is shown in Fig. 1

Figure 1: Legendre transform of S is F , marked as the intercept of S axis for a speci�c V . This makes F
function of the same variables as S, while also suitable for being used as a function of derivative of S.
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We can see that the tangent line satis�es

S =
@S

@V
V + F =

p

T
V + F

F = S � p

T
V = S � V

@S

@V
(4)

Now, doing the substitution for S = S(p) and V = V (p), we have

F = kB log

�
�kBT

p

�
� p

T

�
kBT

p
� 


�
N

�
= kB log

�
�kBT

p

�
� kB +


p

�T
N

We have now carried out the Legendre trasform of S to F for variable p
T
= @S

@V
We already see that there

is N present in the new function. Furthermore, we see that

@F

@N
=


p

�T
=

@S

@N

and therefore, we have conserved the information in this new function. Furthermore, we can still determine
the state equation, as

@S

@V
=

@

@V

� p
T
V + F (p;N)

�
=

p

T
= C

@S

@N
= C

@F

@N

And therefore we have not lost any information about the system during this transition.
Inversly, we can calculate S from F if we notice that

pV = TS � TF

and so
@(pV )

@p
= V =

@(TS � TF )

@p
= �T @F

@p

�V
T

=
@F

@p

Therefore, we can calculate Legendre transform of F , lets call it G now, due to variable �V
T

= @F
@p

as

G = F � p

��V
T

�
= F + p

V

T
= S = F � p

@F

@p

Therefore, we can get S back from knowledge of F (p;N) only. We can check that

G = F � p
@F

@p
= F � p

�
kB

p

�kBT

(��kBT )
p2

+

N

�T

�
= F �

�
�kB +


p

�T
N
�
= kB log

�
�kBT

p

�

which we know is equal to the entropy S.

1.2.2 Formal Legendre Transforms

If we want to transform function f(x) to its Legendre transform h(p) where p = @f
@x
, we write

h(p) = f � x
@f

@x

The inverse transform is symmetrical, i.e.

f(x) = h� p
@h

@p

which can be seen by taking derivative with respect to p of the �rst equation

@h

@p
= �x

and then substituting for x in the �rst equation.
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Simply by applying the de�nition, we can derive the formula for transform of function of more than one
variable as follows. Lets have function f(x; y), function transformed from x to p called g(p; y) and transform
of this function from y to q called h(p; q). From de�nition

g(p; y) = f � x
@f

@x

and transforming g

h(p; q) = g � y
@g

@y
= f � x

@f

@x
� y

@

@y

�
f � x

@f

@x

�
= f � x

@f

@x
� y

@f

@y
� y

@

@y

�
@f

@x

�

Remembering that p = @f
@x
, this function has no explicit dependence on y, so

h(p; q) = f � x
@f

@x
� y

@f

@y
(5)

We can perhaps recognize the form of this expression from Hamiltonian mechanics, where we had that the
Hamiltonian is given in terms of Lagrangian as

H =
X
i

qi
@L

@ _qi
�L

which is essentially the minus version of the Legendre transform of the Lagrangian from canonical velocities
_qi to canonical momenta @L

@ _qi
.

1.3 Fundamental Equation of Thermodynamics

First law of thermodynamics suggest that we can write the internal energy as function of state variables as
follows

U = U(S; V;N)

and dependence on other variables (T; p; �) can be determined by the Legendre transformations of U and

we will include �~m � ~B directly to U afterwards.
Since � and all its arguments are extensive variables, if we increase the system size by ratio �, we must
have

�U = U(�S; �V; �N)

Taking total derivative with � leads to

U =

�
@U

@S

�
V;N

d(�S)

d�
+

�
@U

@V

�
S;N

d(�V )

d�
+

�
@U

@N

�
S;V

d(�N)

d�
=

�
@U

@S

�
V;N

S+

�
@U

@V

�
S;N

V+

�
@U

@N

�
S;V

N

Comparing this to the �rst law of thermodynamics,

dU = TdS � pdV + �dN

we have

U = TS � pV + �N (6)

This is called the fundamental equation of thermodynamics. It is from here that we can include other types
of energy or work into our thermodynamical description easily, for example, we know that the internal
energy is changed by �~m � ~B by presence of magnetic moment and magnetic �eld, so that

U = TS � pV + �N � ~m � ~B
Similarly, if we had more than one species of particles, we could include them as

U = TS � pV +
X
j

�jNj � ~m � ~B

Comparing this with the �rst law of thermodynamics, we have a conditon on the di�erentials of state
variables

0 = SdT � V dp+
X
j

Njd�j � ~B � d~m

especially, in zero �eld, this becomes the Gibbs-Duhem equation

SdT � V dp+
X
j

Njd�j = 0 (7)

which essentially sets a boundary conditions on state variables in the phase space.
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1.3.1 Fundamental Thermodynamic Relation Out of Equilibrium

Out of the equilibrium, we have

dS � �Q

T
and therefore �Q � TdS and so

dU = �Q� �W � TdS � pdV + �dN

Hence

T �
�
@U

@S

�
V;N

�p �
�
@U

@V

�
S;N

� �
�
@U

@N

�
S;V

And so

U =

�
@U

@S

�
V;N

S +

�
@U

@V

�
S;N

V +

�
@U

@N

�
S;V

N � TS � pV + �N

U � TS � pV + �N

1.4 Thermodynamical Potentials

Speci�c situations might require a speci�c set of variables to describe a certain system. This is especially
true when some of the variables are in fact constants by the nature of the system.
For example, consider a system where the volume, number of particles and temperature are �xed (so called
canonical ensemble). Instead of using U = U(S; V;N), we might want to switch to a system where the
function prescribing the thermodynamics of the system will depend on (T; V;N), because all of these are
constants and therefore this function of state will have to be conserved by all processes in the system as
well. Therefore, we need to carry out Legendre transformation to

F = U � S

�
@U

@S

�
V;N

= U � TS

We can quickly check that the di�erential is

dF = dU � TdS � SdT = TdS � pdV + �dN � TdS � SdT = �SdT � pdV + �dN

and since T , V and N are constants, we get the expected result that dF = 0. In a non-equilibrium state,
we would have

dU � TdS � pdV + �dN

and so
dF = dU � TdS � �SdT � pdV + �dN = 0

dF � 0 (8)

Therefore, the system will move so that F is minimized. F here is called the thermodynamical potential of
the system, and in this speci�c case it is called the Helmholtz free energy.
We could of course choose di�erent conditions on which variables are constant, and some of these are now
listed here.

1.4.1 Microcanonical Ensemble

Here, we suppose that there is no heat 
ow in the system, which in equilibrium means

�Q = TdS = 0

which is true when we set S constant. Furthermore, we restrict the systems volume and number of particles.
Therefore, we see that U(S; V;N) is a constant, and �rst law states

dU = TdS � pdV + �dN = 0

Again, in non-equilibrium state, TdS � 0 and dU � 0 - the internal energy in this system is minimized and
U is the potential of this system, ruling the thermodynamics of it.
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1.4.2 Pressure Reservoir

Suppose now that we have an isolated system that is kept at constant pressure. This means that the
pressure, number of particles and heat 
ow (and thus entropy) are constants. We therefore search for
function H(S; p;N) which will be a potential of the system. By Legendre transform

H = U � V

�
@U

@V

�
S;N

= U + pV

is the potential of the system. It is called the enthalpy of the system. Again, it is true that at equilibrium,
dH = 0, otherwise dH � 0.

1.4.3 Sealed Container

Consider now a system which has a �xed particle number, but can change volume and exchange heat with
some reservoir, keeping its pressure and temperature constant. This means that we search for G(T; p;N).
Legendre transform U to get

G = U � S

�
@U

@S

�
V;N

� V

�
@U

@V

�
S;N

= U � ST + pV

This potential is called the Gibbs free energy of the system. Again, dG � 0 where the equality appears in
equilibrium.

1.4.4 Grand Canonical Potential

Lastly, consider a system at �xed T and V , but which is able to exchange particles with a reservoir, which
�xes the chemical potential �. We search for �(T; V; �), which leads to

� = U � S

�
@U

@S

�
V;N

�N

�
@U

@N

�
S;V

= U � ST � �N

This is called the grand potential, or also the Landau potential.

1.5 Maxwell Relations

So far, we have been extensively using the �rst derivatives of the potentials to determine state variables. If
we carefuly take second derivatives of potentials, we can then relate �rst derivatives of some state variables
to each other. For example, we know that in a macrocanonical ensemble.�

@U

@V

�
S;N

= �p

and �
@U

@S

�
V;N

= T

Hence, �
@T

@V

�
S;N

=

�
@

@V

�
S;N

�
@U

@S

�
V;N

Since we can exchange the order of partial derivatives, we then have�
@T

@V

�
S;N

=

�
@

@S

�
V;N

�
@U

@V

�
S;N

= �
�
@p

@S

�
V;N

So, we derived that �
@T

@V

�
S;N

= �
�
@p

@S

�
V;N

which is a relation not at all obvious from the speci�cation of the system.
In general, if we have di�erential of the thermodynamical potential in form

d� =
X
i

YidXi

We can write Maxwell relations as

8i; j; i 6= j :

�
@Yi
@Xj

�
8k 6=j

=

�
@Yj
@Xi

�
8k 6=i

(9)
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1.5.1 Graphical Aid for Finding Maxwell Relations

Suppose that we are given a potential �

d� = AdX +BdY + CdZ

and we are supposed to �nd �
@C

@X

�
Y;Z

We underline the symbols that are given in the potential di�erential, i.e.

d� = AdX +BdY + CdZ

We then draw lines over letters so that each term in the di�erntial is either with no lines or with both an
overline and an underline, i.e.

d� = AdX +BdY + CdZ

The symbols with the overline correspond to the identical Maxwell expression. Therefore, in this case�
@C

@X

�
Y;Z

=

�
@A

@Z

�
X;Y

The parameters kept constant are always the parameters that appear in the di�erential form in the di�er-
ential of the potential. These correspond to the variables that are kept constant by the potential.
To demonstrate this on a physical example, consider �nding�

@N

@V

�
�;T

we see that variables kept constant should be V; �; T , which means that we are dealing with the grand
canonical potential. In the di�erential form

d� = dU � TdS � SdT � �dN �Nd� = �SdT �Nd�� pdV

Hence �
@N

@V

�
�;T

=

�
@p

@�

�
T;V

2 Statistical Mechanics

Statistical mechanics is a subject that tries to describe the behaviour of systems with low energy that
have a only a limited number of states they can occupy. Instead of reaching a perfect equilibrium state,
we assume that the system goes through many somewhat equivalent equilibrium state with probability of
existing in a state depends on the distance of the state from the equilibrium and the number of states that
correspond to this same distance from equilibrium.
The equivalent states which the system continuously goes through are called the microstates, and the
number of microstates is usually dictated by function 
, which is a function of relevant state variables of
the system.
To create a link to classical thermodynamics, we need to de�ne some macroscopic variable in terms of the
microstate. The variable chosen is the entropy, which is de�ned as

S = �kB
X
!

P (!) ln(P (!)) (10)

where the sum runs over all microstates ! and P (!) is the probability that the state is in a given microstate.
This is called the Gibbs de�nition of entropy.
We then apply the principle of maximizing the entropy to �nd the equilibrium states. To maximize the
entropy, we need to maximize S under the constraint thatX

!

P (!) = 1
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in order for the probability distribution to be normalized. Using Lagrange multipliers method for some
speci�c microstate 


@

@P (
)

 X
!

P (!)� 1

!
= �

@

@P (
)

 
�kB

X
!

P (!) ln(P (!))

!

where � is the Lagrange multiplier. Then

1 = �kB�(ln(P (
)) + 1)

1 + kB� = kB� ln(P (
))

P (
) = e
1+kB�

kB�

To determine �, we look at the constraint

1 =
X
!

P (!) =
X
!

e
1

kB�
+1

= e
1

kB�
+1
X
!

1 = 
e
1

kB�
+1

0 = ln
 +
1

kB�
+ 1

kB� =
�1

ln
 + 1

Hence

P (
) = e
1

kB�
+1

= e� ln 
�1+1 =
1




And therefore, the entropy in equilibrium is

S = �kB
X
!

1



ln

1



= kB

ln





X
!

1

S = kB ln
 (11)

This is the Boltzmann entropy.

2.1 Ensembles in Statistical Physics

In statistical physics, ensembles are speci�c systems with reservoirs that behave in a well de�ned way, which
usually restricts the changes in some of the state variables. Statistical physics then tries to use di�erent
moments of the probability distribution P (!) to determine the state functions and variables. For example,
the expected internal energy of the system is given by

U =
X
!

U!P (!)

where U! is the energy in a given microstate. However, it shows that the system is usually better described
by a di�erent function than the distribution function itself, but rather by the function describing the
normalization of P (!). This function is called the partition function, and we can use algebraic and calculus
manipulation to determine di�erent quantities from the partition function. Of course, partition function
di�ers for di�erent ensembles, as they have di�erent probability distributions P (!). Some of the ensembles
and their partition functions are now discussed.

2.1.1 Microcanonical Ensemble

In a microcanonical ensemble, we have two systems of similar size, one with energy E1 and number of mi-
crostates 
1(E1), other with energy E2 and number of microstates 
(E2). The number of total microstates
available to the system as a whole is 
 = 
1
2, and so the entropy of the whole system is

S = kB ln
 = kB ln
1 + kB ln
2

9
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In equilibrium, the entropy will be maximized, so

@S

@E1
= 0 =

@S

@E2

We can assume that the internal energy of the system is conserved, i.e.

U = E1 + E2

is constant, which means that
dU = 0 = dE1 + dE2

dE1

dE2
= �1

The conditions for maximization of entropy then become

kB
1


1

d
1

dE1
+ kB

1


2

d
2

dE1
=
kB

1

d
1

dE1
� kB


2

d
2

dE2
= 0

with the second condition being exactly equivalent. Therefore

kB

1

d
1

dE1
=
kB

2

d
2

dE2

Both sides of this equation are functions of the properties of one system only. Therefore, property of the
system �

� =
kB



d


dE

is the same in both systems if they are in equilibrium. With reference to zeroth law of thermodynamics,
we then know that for two systems in equilibrium, their temperature T is the same. Therefore, we know
that � = �(T ) will also be the same in both systems. Using dimensional analysis, we can determine that
simplest � is

� =
1

T

And hence we have a de�nition of temperature

T =



kB

dE

d


2.1.2 Canonical Ensemble

Suppose now that one of the systems in the case above is much bigger than the other system. Therefore
energy of the smaller system, lets say E1, is always much smaller than energy E2 and the number of
microstates 
 and thus entropy S are both dominated by large system 2. We can therefore say that the
entropy in equilibrium, when it is maximised, is

S = kB ln
1 + kB ln
2 � kB ln
2 � kN ln


is function of 
 only and therefore a function of U only. Suppose that we now transfer the small energy E1

into the �rst reservoir. Taylor expanding the entropy, we have

S(E � E1) = kB ln
(E � E1) � kB ln
(E)� kB
1




d


dE
E1

Remembering the de�nition of temperature, we have

kB ln
(E � E1) = kB ln
(E)� E1

T

We can state that the probability of this event occuring is proportional to the ratio of number of microstates
when all the energy is in the system 2 to the number of microstates when energy E1 is transferred to system
1, i.e.

P (E1) = C

(E � E1)


(E)

10
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where C is some constant. Comparing this to the entropy approximation, we have


(E � E1) = 
(E)e
�

E1
kBT

writing � = 1
kBT

and 1
Z
= C, we have

P (E1) = C

(E � E1)


(E)
= C


(E)


(E)
e��E1 =

e��E1

Z

This means that the probability of system 1 occuring in a certian state is completly independent of system
2 properties, as long as the system 2 is big enough. Here, Z is called the partition function. If we have a
certain energies Ei the system 1 can take, we have normalization condition

1 =
X
i

P (Ei) =
X
i

e��Ei

Z

Z =
X
i

e��Ei

and therefore we have determined the partition function. From it, we can derive other properties of the
system. Mainly, the expected value of internal energy in system 1 U (changing notation from U re�ering
to total energy of system 1 and 2) is

U =
X
i

EiP (Ei) =
1

Z

X
i

Eie
��Ei =

�1
Z

@Z

@�

Using the Gibbs de�nition of entropy (10), we can determine the entropy in system 1 alone as (again,
changing notation to S instead of S1)

S = �kB
X
i

P (Ei) lnP (Ei) = �kB
X
i

P (Ei) (��Ei � lnZ) =

= kB
X
i

�EiP (Ei) + kB lnZ
X
i

P (Ei) = kB lnZ + kB�U = kB lnZ � 1

TZ

@Z

@�

Since this is a system which has constant volume and number of particles, but it can interchange energy
with a big reservoir at nearly constant temperature, the classical potential for this system would be the
Helmholtz free energy. From its de�nition, we know

F = U � TS

which in terms of the partition function is

F =
�1
Z

@Z

@�
� kBT lnZ +

1

Z

@Z

@�
= �kBT lnZ

Now, since we know the classical thermodynamic potential, we can derive all important properties of the
system from it using the di�erential form of the potential, e.g. the magnetic moment of the system is

m = �
�
@F

@B

�
T;V

and similarly for other properties.
One thing we should notice is that the partition function is equal to

Z = e��F

2.1.3 Grand-Canonical Ensemble

The approach we will use here will be exactly the same as before, but we now allow for the exchange
of particles with the big reservoir. The total number of microstates therefore becomes a function of the
number of particles as well, and we have

ln
(E � Ei; N �Ni) � ln
(E;N)� 1




@


@E
Ei � 1




@


@N
Ni = ln
(E;N)� Ei

kBT
� 1




@


@E

@E

@N
Ni

11
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But, remembering the de�nition of chemical potential

� = � @E

@N

where the minus sign occurs because we are moving particles from the big reservoir to the small reservoir
and E refers to the energy of the big reservoir. Hence


(E � Ei; N �Ni) = 
(E;N)e��(Ei��Ni)

which leads to

P (Ei; Ni) =
e��(Ei��Ni)

Z

where Z is the grand-partition function, with

Z =
X
i

e��(Ei��Ni) =
X
i

e��NiZ(Ni)

where Z(Ni) is the canonical partition function for the system containing Ni particles. Again, we can derive
that

N =
X
i

NiP (Ei; Ni) =
X
i

Ni

e��Eie��Ni

Z
=

1

�Z

@

@�

X
i

e��Eie��Ni =
1

�Z

@Z

@�

The energy can be derived as

U =
X
i

EiP (Ei; Ni) =
1

Z

X
i

Eie
��(Ei��Ni) =

1

Z

 
�@Z
@�

+ �
X
i

Nie
��(Ei��Ni)

!
=

= � 1

Z

�
@Z

@�
� �NZ

�
= � 1

Z

�
@Z

@�
� �

�

@Z

@�

�
= � 1

Z

@Z

@�
+

�

�Z

@Z

@�

The entropy follows from Gibbs entropy

S = �kB
X
i

P (Ei; Ni) ln(P (Ei; Ni)) = �kB
X
i

P (Ei; Ni) (��Ei + ��Ni � lnZ ) =

= kB�
X
i

EiP (Ei; Ni)� kB��
X
i

NiP (Ei; Ni) + kB lnZ
X
i

P (Ei; Ni) =

= kB�U � kB��N + kB lnZ

Hence the grand-potential � is

� = U � TS � �N = U � kBT�U + kBT��N � kBT lnZ + �N = �kBT lnZ

Therefore, we again have
Z = e���

which now clearly starts to become a pattern.

2.2 General Ensemble

Consider now an ensemble where the small system can exchange energy E and a set of extensive variables
Xi with the reservoir. This �xes the temperature and intensive variables Yi which are conjugate variables to
Xi. Therefore, the classical potential � refering to the small system dynamics will be obtained by Legendre
transformation of U as

� = U � TS �
X
i

XiYi

where I assumed that the extensive-intensive pair is coupled by di�erential relation

Yi =

�
@U

@Xi

�
j 6=i

where all other extensive variables are kept constant.

12
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The number of microstates will then depend on all the extensive variables that are free to change and on
the energy, i.e.


 = 
(E; ~X)

where ( ~X)i = Xi is the vector of extensive variables. The entropy is dominated by the large system, with

extensive variables vector ~X0 and energy E0. If we then Taylor expand the expression for entropy

S(E0 � E; ~X0 � ~X) = S(E0; ~X0)�
�
@S

@U

�
E �

X
i

�
@S

@Xi

�
j 6=i

Xi

We can write �
@S

@Xi

�
j 6=i

=

�
@S

@U

��
@U

@Xi

�
j 6=i

=
�1
T
Yi

where I used �rst law of thermodynamics to determine the derivative with respect to internal energy. We
must remember the minus sign, as the energy U here corresponds to the energy leaving the big system.
Therefore, using Boltzmann equation for maximised entropy (11)

kB ln
(E0 � E; ~X0 � ~X) = kB ln
(E0; ~X0)� E

T
+
X
i

1

T
YiXi

ln
(E0 � E; ~X0 � ~X) = ln
(E0; ~X0)� E

kBT
+
X
i

1

kBT
YiXi = ln
(E0; ~X0)� �E + �

X
i

YiXi

Therefore, the probability of observing the given state is

P (E�; ~X�) =
1

Z


(E0 � E�; ~X0 � ~X�)


(E0; ~X0)
=
e��(E

��
P

iX
�
i Yi)

Z

where � indexes di�erent microstates (and intensive variables Yi are constant across these states). The
partition function can be expressed as

Z =
X
�

e��(E
��
P

iX
�
i Yi)

The entropy of the small system can be found from the Gibbs entropy as

S = �kB
X
�

P (�) ln(P (�)) = �kB
X
�

P (�)

 
��E� + �

X
i

X�
i Yi � lnZ

!
=

= kB lnZ
X
�

P (�) +
1

T

X
�

E�P (�)� 1

T

X
i

Yi
X
�

P (�)X�
i

Here, we can recognize the expectation valuesX
�

E�P (�) = U

X
�

X�
i P (�) = Xi

and therefore

S = kB lnZ +
U

T
� 1

T

X
i

YiXi

And therefore, the potential of this ensemble is

� = U � TS �
X
i

XiYi = U � kBT lnZ � U +
X
i

XiYi �
X
i

XiYi

And we have therefore that for arbitrary ensemble potential

� = �kBT lnZ (12)

and
Z = e���

13
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2.2.1 In�nite Many States

If some of the variables Xj can span in�nitely many states, then the sum in the partition function becomes
an integral. The partition function is

Z
X
�

e��E
�+�

P
iX

�
i Yi =

 X
�

e�X
�
j Yje��E

�+�
P

i6=j X
�
i Yi

!

If we order the sum in such a way that we sum over increments of Xj , we can then write, in the limit where
the increments in Xj are in�nitesimal

Z =
1

X0
j

�
8Xj

dXje
�XjYj

X

(Xj)

e��E

(Xj)+�

P
i6=j X


(Xj)

i Yi

where X0
j is some scale for Xj values and the integral runs over all permisible values of Xj and 
(Xj) are

the indices of microstates available at Xj .
For example, for a system governed by the Gibbs free energy

G = U � TS + pV

the volume V can grow in arbitrarily small steps. Here, the intensive variable conjugate to V is in fact �p,
so we have

Z =
1

V0

� 1

0

dV e��pV
X

(V )

e��E

(V )

3 Phase Transitions

Phase transitions happen when the entropy of some speci�c arrangement of particles in the system becomes
higher than entropy of some other arrangement. Typical examples are the ice melting to water or water
boiling to vapor. Usually, they are visualized via the phase diagrams, which show areas in which a speci�c
phase is pre�ered. The boundaries of these areas are called the coexistence lines, and when the system is
setup on these lines, the number of phases that meet here can coexist.

3.1 Conditions on Phase Transitions

Suppose we have a system of two phases. Each of the phases can exchange particles and energy with each
other and can take up volume of the other. This means that in equilibrium, the corresponding conjugate
variables of these extensive variables has to be kept constant. In the case of energy, we have to relate it to
entropy to see that temperature T is the composite variable, otherwise pressure p and chemical potential
� are clear.
Therefore, for phase 1 and phase 2, we have

p1 = p2

�1 = �2

T1 = T2

To check our reasoning, we can maximize entropy S = S(U; V;N) = S1(U1; V1; N1) + S2(U2; V2; N2) as

dS =

�
@S1
@U1

�
V1;N1

dU1 +

�
@S1
@V1

�
U1;N1

dV1 +

�
@S1
@N1

�
U1;V1

dN1+

+

�
@S2
@U2

�
V2;N2

dU2 +

�
@S2
@V2

�
U2;N2

dV2 +

�
@S2
@N2

�
U2;V2

dN2

Since the phases can only exchange the extensive properties with each other, we have

dU2 = �dU1; dN2 = �dN1; dV1 = �dV2
and therefore

dS =

"�
@S1
@U1

�
V1;N1

�
�
@S2
@U2

�
V2;N2

#
dU1 +

"�
@S1
@V1

�
U1;N1

�
�
@S2
@V2

�
U2;N2

#
dV1+
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+

"�
@S1
@N1

�
U1;V1

�
�
@S2
@N2

�
U2;V2

#
dN1

From the �rst law of thermodynamics, we have�
@S

@U

�
V;N

=
1

T

�
@S

@V

�
U;N

=
p

T�
@S

@N

�
U;V

= ��

T

and so

dS =

�
1

T1
� 1

T2

�
dU1 +

�
p1
T1

� p2
T2

�
dV1 +

�
�2
T2

� �1
T1

�
dN1

Since we are at equilibrium, entropy is maximized and we require dS = 0, which leads to 3 equations on
the intesive variables

1

T1
=

1

T2
p1
T1

=
p2
T2

�1
T1

=
�2
T2

which are equivalent with the equations previously stated.
Furthermore, since we require that entropy is maximized, we need that the second di�erential of the entropy,
d2S, is negative. This derivation is very long, hence I only present the result for speci�c case of (Gibbs
energy)-like behaviour for each phase (when even there is no more particle 
ow between the phases)�

@V

@p

�
T;fNgi

� 0

�
@S

@T

�
p;fNgi

� 0

8i :
�
@�

@Ni

�
p;T

� 0

where fNig is the set of all Ni, if there is more than 1 species of particles present. These conditions set
the requirements for the stability of the phase equilibrium - �rst one ensures stability against pressure

uctuations, second ensures stability against temperature 
uctuations and third stability against particle
number 
uctuations.

3.1.1 Number of Coexisting Phases

If we have i 2 f1; 2; 3; :::lg indexing chemical species in the system, the chemical potentials at coexistence
of phases indexed by j 2 f1; 2; 3; :::; ng satisfy

�i;j(p; T; fNk 6=ig) = �i;m 6=j(p; T; fNk 6=ig) = �i;p 6=fm;jg(p; T; fNk 6=ig) = :::

This is a set of n equations with l + 2 unknowns, which means that the solution exists up to n = l + 2
phases. This means that we can have equilibrium of up to l+ 2 phases in the system containing l di�erent
chemical species.

3.1.2 Triple Point of Water

As water contains only one chemical species, up to 3 phases can exist at the same time. For the case when
we have 3 phases, p and T are exactly set by the requirements given by stability of equilibrium. This occurs
at p = 6� 10�3 atm and T = 0K where the zero is exact - the Kelvin scale is de�ned with reference to the
triple point of water.
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3.1.3 Ends of Coexistence Lines

In some phase diagrams, we might see that the coexistence lines disappear - we no longer observe the
jump between the phases, rather we observe a continuous change of properties of the system. For example,
for water above 374oC and 218 atm, we no longer observe disctinct di�erence between vapour and liquid.
This is called the critical point of water, and region with higher pressure and temperature is calle the
supercritical region. The region with higher temperature but lower pressure is called the supercritical 
uid
region, but there is no distinct phase transition between the two regions. The phase transition that occurs
there is continuous, and these types of transitions will be discussed later.

3.2 First Order Phase Transitions

Consider now phase transitions in a Gibbs-like ensemble (isobaric and isothermal). First, we will derive
some speci�c cases of variables for this ensemble.

3.2.1 Variable Concentrations in Gibbs Ensemble

Gibbs free energy is given by Legendre transform of U to varaibles p and T which are �xed by reservoir as

G = U � TS + pV

Using fundamental equation of thermodynamics (6), we have

G = �N

or for more particle species

G =
X
i

�iNi

The di�erential of the Gibbs free energy is

dG = dU � TdS � SdT + pdV + V dp = V dp� SdT + �dN

So, the changing variables are de�ned as

� =

�
@G

@N

�
T;p

S = �
�
@G

@T

�
p;N

V =

�
@G

@p

�
T;N

Using the expression for �, we can substitute this back to expression for G to �nd

G = N� = N

�
@G

@N

�
T;p

= NG

where G is the Gibbs free energy concentration - Gibbs free energy per particle. We can then substitute
this de�nition of Gibbs energy back to expressions for S and V

S = �
�

@

@T

�
p;N

"
N

�
@G

@N

�
T;p

#

Since the outer derivative is taken at constant N , we can move N in front of the outer derivative to get

S = �N
�

@

@T

�
p;N

�
@G

@N

�
T;p

Swapping the order of partial derivatives leads to

S = �N
�

@

@N

�
T;p

�
@G

@T

�
p;N

= N

�
@S

@N

�
T;p

= NS
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where S is the entropy concentration - entropy per particle.
Similarly

V =

�
@

@p

�
T;N

"
N

�
@G

@N

�
p;T

#
= N

�
@V

@N

�
p;T

= NV

with V representing the volume per particle.
Finally, we can invoke Maxwell relations to �nd

S =

�
@S

@N

�
T;p

= �
�
@�

@T

�
N;p

as
dG = �SdT + V dp+ �dN

Similarly

V =

�
@V

@N

�
T;p

=

�
@�

@p

�
T;N

3.2.2 Characterization of First Order Transitions

In �rst order transitions, the derivative of the chemical potential with temperature is discontinuous - we
observe a sharp edge in the function � = �(T ) at the phase transition. This means that there is a �nite
step in the entropy per particle

�S =

�
@�1
@T

�
N;p

�
�
@�2
@T

�
N;p

for the change from phase 1 to phase 2 (the signs have swapped due to de�nition of S ).
Hence, across the transition, there is a change in the total entropy

�S = N�S

which leads to a latent heat that needs to be provided for the transition to occur, given from the second
law of thermodynamics (2)

�Q = TC�S = TCN�S

where TC is the temperature of the transition. During the transition, we therefore have to provide �nite
amount of heat for no observable change in temperature - the heat capacity C = @Q

@T
diverges at the phase

transition TC .
We should �nally note that TC will be a function of pressure. Therefore, we can see that V will be
discontinuous as well at the phase transition, and we will have �nite change of volume for no change in
pressure, meaning that the isothermal compressibility of the gas will diverge.

3.3 Continuous Phase Transitions

In continuous phase transitions, S and V do not change discountinuously, but change very rapidly at
the phase transition, usually with the second derivative of � diverging at the phase transition (i.e. �rst
derivative of S with T diverging at the phase transition). The illustration is presented in Fig. 2 and Fig.
3.
Continuous phase transitions represent a state of matter when small changes in p or T lead to big changes
in properties of the system. Therefore, they are usually accompanied by emergence of some long scale
oscillations and correlations in the system, as will be discussed later.
Furthermore, we can in some sense see continuous phase transitions as a special kind of �rst order phase
transition where the gap �S just goes to 0. In this way, we can imagine how for example the water-vapour
phase transition becomes a continuous phase transition above the critical point - the entropy gap could
exactly close on the critical point.

3.4 p-V diagrams and Metastability

In contrast with p � T diagrams, p � V diagrams (where V = V
N
) contain the coexistence regions rather

than coexistence lines. If a system is within a coexistence region on p � V diagram, it can either be in
an inherently unstable state, where any arbitrarily small perturbation will o�set it to separate into two
phases, or in a metastable region, where the perturbation must reach some �nite magnitude to cause the
separation of phases.
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Figure 2: First order phase transition. Entropy per particle S is discontinuous across the phase transition.
Here, I used � = �T for T < TC and � = �T for T � TC . The whole S is shifted upwards.

Figure 3: Second order phase transition. At TC , the derivative diverges while S remains continuous. In
this case, I used S =

p
T � TC for T � TC and S =

p
TC � T for T < TC .

In order to bring the system to a metastable state, we must minimize the perturbations in the system, so
that it cannot separate phases. This is usually done by cooling/heating the system very slowly. Once in
the metastable region, if the system is to separate, it does so by the so called lever rule.

3.4.1 Lever Rule

Suppose we have a system at constant pressure p which has been brought to a metastable state with
volume per particle Vm, which is larger than the largest volume per particle of the denser phase V1 and
smaller than smallest volume per particle of a lighter phase V2. If the phases are to separate, what will
be the ratio of particles in each phase? We can interpret the metastable state as a mixture of both
phases. The total number of particles in the state is N = N1 +N2, and the total volume of the system is
V = V1 + V2 = V1N1 + V2N2 Therefore, the metastable concentration is

Vm =
V

N
=
V1N1 + V2N2

N1 +N2

Vm(N1 +N2) = V1N1 + V2N2

N1(Vm � V1) = N2(V2 � Vm)

N1

N2
=
V2 � Vm
Vm � V1 (13)

18



PX366 - Statistical Physics Revision Guide

Usually, the metastable states are less stable the further away from V2 or V1 we go. Therefore, the
coexistence regions have two de�ned subregions. The outer boundary of the coexistence region is the
binodal line, which marks the beginning of the metastable region. Further inwards, there is a spinodal line,
which marks the start of truly unstable region, where the phases cannot be metastable. The stability of
the state decreases as we approach the spinodal line.

3.5 General Continuous Phase Transitions

In many experimental situations, we observe a similar dependence for seemingly di�erent phenomena. For
example, we observe that any binodal line between gas and liquid can be characterized as

�liquid + �gas
2�C

= 1 +
3

4

�
1� T

TC

�

where TC is the critical temperature of the transition and � are the mass densities of the liquid, gas and at
the critical transition.
This lead to a hypothesis that all critical phenomena share a distinct set of properties which are very general
and independent of the sytem we try to describe.

3.5.1 Properties of Continuous Phase Transitions

Continuous phase transitions exhibit very large long range 
uctuations and correlations as we are closing
to the critical point. These 
uctuations have typically a set dimensionless length connected with them.
Depending on the dimensionless length and the speed of divergence of these 
uctuations as we approach
the critical point, we separate the continuous transitions into what is called the universality classes.
Each universality class has a critical exponent that characterizes the divergence of the correlations and
behaviour of other properties close to the critical point.

3.6 Spontaneous Symmetry Breaking

A speci�c set of continuous phase transitions is the spontaneous symmetry breaking. During this transition,
a certain symmetry is broken - an asymmetric state is chosen by the system without any outside interference.
Usually, we say that certain order parameter, which describes how this symmetry is broken, emerges at the
SSB transition.
For example, if we cool a ferromagnet below certain critical temperature TC , it chooses one direction for
the magnetisation ~M , and thus breaks rotational symmetry of the original system, which had ~M = 0.
In SSB transitions, the nature of the symmetry also plays a big role. For continuous symmetries (translation,
rotation), arbitrarily small 
uctuations lead to long range correlations during the transition, which leads
to observation of so called Goldstone modes, which have size dependent on dimensionless properties of the
system. Discrete symmetries (mirror image, rotation by a set number of degrees) do not share this property.

3.6.1 Ising Model

To illustrate the concepts of spontaneous symmetry breaking, we will discuss the mean �eld approximation
of the Ising model of ferromagnetism. In the Ising model, we have a cubic lattice of atoms with spins
Si = �1 in d dimensions (e�ectively a crystal in d + 1 dimensions where all the spins are aligned along
one axis, reducing the dimensionality of the problem to d). This means that each atom has 2d neighbours.
Suppose that there is N of these atoms. Then the number of unique nearest-neighbour pairs is Nnn = Nd,
i.e. one half of the all possible pairs.
The energy of each microstate of the magnet is given by

E = �J
X
<i;j>

SiSj �B
X
i

Si (14)

where the �rst sum runs over all nearest neighbour pairs. Here, since Si is dimensionless, J and B both have
the units of energy. If we wanted to dimensionalize back to SI units, we can divide B by a Bohr magneton,
which will give S in units of magnetic moment. Right now, we will keep working in dimensionless variant.
Suppose the system is kept at constant temperature and volume and number of particles - it form a canonical
ensemble. The partition function is then

Z =
X
~S

e��E(
~S) =

X
~S

e�(J
P

<i;j> SiSj+B
P

i Si)
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where ~S is the vector giving value of each Si - it is the microstate of the system.
This is generally hard to solve. It has been solved in 1D and 2D, but in higher dimensions, not yet. There-
fore, we apply approximations, with mean �eld being the standard one. In the mean �eld approximation,
we expect that spins have some overall magnetisation m =< S > (here, m is dimensionless). The mean
�eld helps us reduce the energy expression as

E = �J
X
<i;j>

(m+ (Si �m))(m+ (Sj �m))�B
X
i

Si =

= �J
X
<i;j>

�
m2 +m [Si �m+ Sj �m] + (Si �m)(Sj �m)

��B
X
i

Si =

= �J
X
<i;j>

��m2 +m(Si + Sj) + (Si �m)(Sj �m)
��B

X
i

Si

The �rst term in the �rst sum evaluates toX
<i;j>

�m2 = �m2
X
<i;j>

1 = �Ndm2

as there is Nd nearest neighbours. The second term evaluates toX
<i;j>

m(Si + Sj) = m
X
<i;j>

Si +m
X
<i;j>

Sj = md
X
i

Si +md
X
j

Sj = 2md
X
i

Si

as each of the spins have d unique nearest neighbours (half of 2d). The third term goes to zeroX
<i;j>

(Si �m)(Sj �m) = 0

As this means that over large distances, the �eld is essentially the mean �eld m, which is our requirement
for mean �eld theory to apply. We will later see that this term correponds to the correlations of the spins,
and its negligence in some cases leads to a failure of mean �eld theories.
With these terms evaluated, the energy becomes

E = �J(�Ndm2 + 2md
X
i

Si)�B
X
i

Si

E = JNdm2 � (2Jmd+B)
X
i

Si (15)

Therefore, the partition function is

Z =
X
~S

e��(JNdm
2�(2Jmd+B)

P
i Si) = e��JNdm

2X
~S

e�(2Jmd+B)
P

i Si =

= e��JNdm
2X

~S

Y
i

e�(2Jmd+B)Si

Suppose that ~S = (S1; S2; :::; SN ) = (S1; ~S
R
2 ) = (S1; S2; ~S

R
3 ) where I de�ned

~S3
i = (Si; Si+1; :::; SN ) as the

remainder of the vector starting with the ith element. Then, we can order the sum in the following way

X
~S

Y
i

e�(2Jmd+B)Si = � =
X
~SR1

NY
i=1

e�(2Jmd+B)Si =

=
X

S1=1;~SR2

e�(2Jmd+B)S1

NY
i=2

e�(2Jmd+B)Si +
X

S1=�1;~SR2

e��(2Jmd+B)S1

NY
i=2

e�(2Jmd+B)Si

where we took into account both possibilities for S1 and add these terms together �rst. This becomes

� =
X
~SR2

e�(2Jmd+B)
NY
i=2

e�(2Jmd+B)Si +
X
SR2

e��(2Jmd+B)
NY
i=2

e�(2Jmd+B)Si =
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= e�(2Jmd+B)
X
~SR2

NY
i=2

e�(2Jmd+B)Si + e��(2Jmd+B)
X
~SR2

NY
i=2

e�(2Jmd+B)Si =

=
�
e�(2Jmd+B) + e��(2Jmd+B)

�X
~SR2

NY
i=2

e�(2Jmd+B)Si = 2 cosh(�(2Jmd+B))
X
~SR2

NY
i=2

e�(2Jmd+B)Si

We have therefore shown that

� =
X
~SR1

NY
i=1

e�(2Jmd+B)Si = 2 cosh(�(2Jmd+B))
X
~SR2

NY
i=2

e�(2Jmd+B)Si

We therefore might be able to see that we have factored out part of the sum. In fact, we can similarly show
that for any j

X
~SRj

NY
i=j

e�(2Jmd+B)Si = e�(2Jmd+B)
X
~SRj+1

Y
i=j+1

e�(2Jmd+B)Si + e��(2Jmd+B)
X
~SRj+1

Y
i=j+1

e�(2Jmd+B)Si =

= 2 cosh(�(2Jmd+B))
X
~SRj+1

Y
i=j+1

e�(2Jmd+B)Si

Hence, we can infer that

� =
X
~SR1

NY
i=1

e�(2Jmd+B)Si = 2 cosh(�(2Jmd+B))
X
~SR2

NY
i=2

e�(2Jmd+B)Si =

= (2 cosh(�(2Jmd+B)))2
X
~SR3

NY
i=3

e�(2Jmd+B)Si = ::: = (2 cosh(�(2Jmd+B)))N�1
X
~SRN

NY
i=N

e�(2Jmd+B)Si =

= (2 cosh(�(2Jmd+B)))N�1
�
e�(2Jmd+B) + e��(2Jmd+B)

�
= (2 cosh(�(2Jmd+B)))N

Therefore, we �nally have the partition function

Z = e��JNdm
2

� = e��JNdm
2

(2 cosh (�(2Jmd+B)))
N

(16)

The thermodynamic potential is the Helmholtz free energy as this is a canonical ensemble. So, we have

F = �kBT lnZ = �kBT
�
��JNdm2 + ln

�
(2 cosh(�(2Jdm+B)))

N
��

=

= JNdm2 �NkBT ln (cosh(�(2Jdm+B)))�NkBT ln 2

In the presence of magnetic �eld and total magnetisation M , the internal energy of the system is modi�ed
as dU ! dU �MdB, and therefore the di�erential of the Helmholtz free energy is

dF = dU � TdS � SdT = �SdT � pdV + �dN �MdB

Hence, as N and V are constant, we have

M = �
�
@F

@B

�
N;T;V

which in this case leads to

M = NkBT
1

cosh(�(2Jdm+B))
sinh(�(2Jdm+B))� = N tanh(�(2Jdm+B))

We have said that m is the average magnetisation < S >, and so we can write M = mN , and so we have

m = tanh(�(2Jdm+B)) (17)
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This is a self-consistency criterion for the Ising model, which will help us determine what are the favourable
values of magnetisation m the system takes. We are particularly interested in the case when B = 0, and
therefore the problem should be symmetrical and unless the symmetry is broken, the system should not
choose a speci�c m, as there is no pre�ered direction.
In the case when B = 0, we have

m = tanh(2Jdm�)

We can clearly see that one solution is at m = 0. However, there can be two other solutions. As
limx!�1 tanh(x) = �1, if at 0 the tangent to tanh(2Jdm�) has gradient smaller than gradient of m,
which is 1, we will have two other solutions, as shown in Fig. 4

Figure 4: The magnetisation in the Ising model. The dashed line is the line of m, the full lines are lines of
tanh(2Jdm�). We see that the number of solutions depends on the slope of tanh(2Jdm�) at m = 0.

The gradient of tangent to tanh(2Jdm�) can be obtained as the derivative at 0

g(m) =
@(tanh(2Jdm�))

@m
=

1

cosh2(2Jdm�)
2Jd�

At m = 0

g(0) = 2Jd� =
2Jd

kBT

Hence, if g(0) < 1, we have only one solution with m = 0, but if g(0) > 1, we have three solutions. The
new solutions start to occur at g(0) = 1, which corresponds to temperature

TC =
2Jd

kB
(18)

Here, we give the critical temperature a special name - the Curie temperature TC .
Finally, to �gure out in which of these three solutions the system chooses to be, we need to evaluate the �rst
and second derivative of F to �nd which solution corresponds to the minimum of F . The �rst derivative
with respect to m is

@F

@m
= 2JNdm�NkBT tanh(�(2Jdm))2Jd� =

= 2JNdm� 2JNd tanh(�(2Jdm)) = 2JNd (m� tanh(�(2Jdm)))

we can therefore see that the @F
@m

= 0 when m = tanh(�(2Jdm)) - these are all the solutions we require
from self-consistency - all of these extremise F . The question remains, which are maxima and which are
minima. The second derivative is

@2F

@m2
= 2JNd

�
1� 2Jd�

cosh2(�2Jdm)

�

We can use hyperbolic identity

1

cosh2(�2Jdm)
= 1� tanh2(�2Jdm)
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And from the self-consistency criterion (17), we �nd that at B = 0, for which we are solving the problem

1

cosh2(�2Jdm)
= 1�m2

And so we have
@2F

@m2
= 2JNd

�
1� 2Jd�(1�m2)

�
We are searching for minima, so we are looking at which m the second derivative will be positive (corre-
sponding to minimum of F ), i.e.

0 < 2JNd
�
1� 2Jd�(1�m2)

�
0 < 1� 2Jd� + 2Jd�m2

Using TC = 2Jd
kB

, we have
TC
T
m2 >

TC
T

� 1

m2 > 1� T

TC

We can see that for m = 0, this applies when

0 > 1� T

TC

T

TC
> 1

We see that m = 0 is the minimum of the system for T > TC . Conversly, if m 6= 0, we have m2 > 0, which
can only happen when T < TC . Therefore, we have the expected behaviour - spontaneous magnetization
below TC and no magnetization above TC . Finally, we can see that by substitution of m = 0 for T < TC
into the original equation, we get that m becomes the local maximum of F .
As a remark, in a non-zero �eld, the behaviour is the same, but the Curie temperature TC is shifted to
TC ! TC + B

kB
, i.e. it grows, because it is easier for spins to overcome thermal 
uctuations and magnetize.

3.6.2 Ising Model Close to Transition

The question now is how exactly does the state m = 0 transition from being the minimum of F to being
local maximum of F? We can write F for small m

F = JNdm2 �NkBT ln(cosh(�2Jdm))�NkBT ln 2

Using cosh(x) � 1 + x2

2 + x4

24 for small x

F � JNdm2 �NkBT ln

�
1 +

1

2
(2�Jdm)2 +

1

24
(2�Jdm)4

�
�NkBT ln 2

Using ln(1 + x) � x� x2

2

F � JNdm2 �NkBT ln 2�NkBT

 
1

2
(2�Jdm)2 +

1

24
(2�Jdm)4 � 1

2

�
(2�Jdm)2

2
+

(2�Jdm)4

24

�2
!
�

� JNdm2 �NkBT ln 2�NkBT

�
1

2
(2�Jdm)2 +

1

24
(2�Jdm)4 � 1

2

(2�Jdm)4

4

�
�

� JNdm2 �NkBT ln 2� 1

2
NkBT (2�Jd)

2m2 +
N

12
kBT (2�Jd)

4m4

Remembering that TC = 2Jd
kB

(18), we have

F � �NkBT ln 2 +
N

2
kBTCm

2 � N

2
kBT

�
TC
T

�2

m2 +
N

12
kBT

�
T

TC

�4

m4
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Figure 5: Spontaneous symmetry breaking as consequence of the form of the thermodynamic potential in
terms of order parameter. For the case of Ising model, the order parameter is the magnetization m and
phase transition occurs at Curie temperature TC .

Hence

F = �NkBT ln 2 +
N

2
kB

T

TC
(T � TC)m

2 +
N

12
kBT

�
T

TC

�4

m4 (19)

The shape of this function depends largly on the sign of the coe�cient before m2. If the coe�cient is
positive, then m = 0 is the minimum, while if the coe�cient is negative, m = 0 is local maximum, as shown
in Fig. 5
Therefore, we have �gured out how the transition from maximum to minimum occurs. In fact, Ginzburg
and Landau created a theory that this applies generally for a symmetry breaking transitions, as will be
discussed later.

3.6.3 Caveats of Ising Model

The exact solution of the Ising model in 1D suggest that there is no spontaneous magnetization in 1D.
Where does the mean�eld theory than make the mistake? It is in neglecting the correlation term. As it
turns out, in 1D, if we have enough energy to 
ip one spin to anti-aligned position, we can 
ip the spins
neighbouring to this one without any energy cost. Therefore, we can create arbitrarily long spin 
ips with
a small amount of energy. This means that in 1D, we have divergent correlation length between the spin

uctuations, and therefore we cannot disregard the correlation term

P
<i;j>(Si �m)(Sj �m).

It is a general property of mean �eld theories that we have a certain lower critical and upper critical
number of dimensions dC and DC , respectivelly. Below dC , the mean �eld theory does not provide neither
qualitative nor quantitative description of the system. Between dC and DC , the qualitative behaviour
can be distinguished, but quantitative values are wrong. Above DC , both qualitative and quantitative
descriptions are accurate. For the Ising model, dC = 1 and DC = 4.

3.7 Ginzburg-Landau Spontaneous Symmetry Breaking Phase Transitions

In this formalism, we have a free energy that has to be symmetrical due to properties of the system in
high symmetry phase. In the high symmetry phase, the symmetrical state of the system is also pre�ered.
However, as we lower temperature towards critical temperature TC , the symmetrical state of the system
becomes unstable, even though the free energy is still symmetrical in the original symmetry. Therefore,
system spontaneously decays into the new minima of the free energy, breaking the symmetry.
This break in symmetry is characterized by the emergence of symmetry breaking order parameter, generally
some �. The general free energy of the system susceptible to SSB (spontaneous symmetry breaking) can
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be then expressed as

� = �0(T; Y ) + �2(T; Y )(T � TC)�
2 +�4(T; Y )�

4 (20)

where Y are some other intensive properties of the system. Hence, the symmetrical state is pre�ered as
long as T > TC , asymmetry is chosen when T < TC .
The value of the order parameter after the symmetry breaking is given by

@�

@�
= �2�2(TC � T )� + 4�4�

3 = 0

since � = 0 is not the minimum, we are left with two other solutions

4�4�
2 = 2�2(TC � T )

� = �
r

�2

2�4
(TC � T )

This applies generally for many cases of SSB.

3.7.1 Asymmetric Free Energy

We can also observe emergence of order parameter � in asymmetric free energies of type

� = �0 +�2(T � TC)�
2 +�3�

3 +�4�
4

This energy has three local extrema

@�

@�
= 2�2(T � TC)� + 3�3�

2 + 4�4�
3 = 0

one at zero (again), and other two appear at

2�2(T � TC) + 3�3� + 4�4�
2 = 0

� =
�3�3 �

p
9�2

3 � 32�2�4(T � TC)

8�4

Importantly, one of these extrema is a minimum which becomes global minimum before T reaches TC .
Therefore the system will tend to change to this minimum in a discontinuous jump across some free energy
barrier, if the 
uctuations provide enough energy. This is typical for the �rst order phase transitions, which
can be described like this. To illustrate this, consider Fig. 6

4 Polymers

Polymers are long, usually 1D molecules that are on the troublesome mesoscale of lengths - too big to
be approximated as a continuum and too big to be treated quantum-mechanically. Here, we will look at
ideal polymers in a canonical ensemble. The ideal approximation here means that the polymers are non-
interacting - the internal energy of the polymer is zero. Therefore, the polymer dynamics are driven solely
by the principle of entropy maximization.
We assume that the polymers bonds are chosen in a random direction between each monomer, with some
probability distribution. For ideal polymer, we assume that this probability distribution is same for all
the bonds (memoryless property). Furthermore, we will assume here that the polymer is linear - every
monomer is connected at most by two bonds, i.e. no branches are created.
To describe the polymer, we specify the locations of each monomer with reference to the edge monomer
with which the polymer chain starts. The reference position of the ith monomer is given as

~ri =

iX
j=1

~uj

where ~uj is the vector corresponding to the jth bond - ~uj = ~uj+1�~uj . We de�ne that the starting monomer

is at ~r0 = ~0.
Usually, to characterize the polymer, we use several quantities. One is the overall average displacement
< ~rN >, where N is the number of bonds (N + 1 is the number of monomers). Then, we have the average

distance squared between start and end < ~r2N >, the centre of mass displacement ~RCM = 1
N

P
i ~ri and

radius of gyration R2
G =< 1

N

P
i(~ri � ~RCM )2 >. Typically, we also talk about the contour length - the

total length of the monomer L =
P

i j~uij. Here, < x > means the mean value of variable x.
We will now try to determine these quantities in some basic models of polymers.
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Figure 6: Spontaneous symmetry breaking in �rst order transition does not occur, because symmetry is
broken by the free energy itself, and the system discountinuously jumps over the energy barrier if the

uctuations are high enough. If they are not, the system remains in a metastable state. The green line is
for T > TC , red line is for T = TC and green line is for T < TC .

4.1 Freely Jointed Chain

For the freely jointed chain, we assume that the direction of each bond is chosen completly randomly, while
the bond length is constant. This means that the bonds can potentailly cross each other - this is truly a
simple model. If the bonds are chosen completly randomly, the direction of each bond is uncorrelated to
the others, which means that

< ~ui � ~uj >= �ij < ~u2i >

Since the bond length is constant, we can express each bond as

~ui = lêi

where êi is a random unit vector and l is the bond length. Then

< ~ui >= l < êi >= 0

< ~u2i >= l2 < ê2i >= l2 < 1 >= l2

Hence, we have
< ~ui � ~uj >= l2�ij

The distance of the from start to end is

~rN =

NX
i=1

~ui

Hence the average value is

< ~rN >=

*
NX
i=1

~ui

+

Since the bonds are independently chosen from the distribution, we can say that

< ~rN >=

*
NX
i=1

~ui

+
=

NX
i=1

< ~ui >= ~0

The average square distance is

< (~rN )
2 >=

* 
NX
i=1

~ui

!
�
0
@ NX
j=1

~uj

1
A
+
=

*
NX
i=1

NX
j=1

~ui � ~uj
+
=

NX
i=1

NX
j=1

< ~ui � ~uj >=
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=

NX
i=1

NX
j=1

l2�ij =

NX
i=1

l2 = l2N

Hence, the root mean square distance between the start and the end of the polymer is l
p
N . The typicalp

N dependence is something we will observe again and again in the following sections.
Radius of gyration is

R2
G =

*
1

N

NX
i=1

(~ri � ~RCM )2

+
=

*
1

N

NX
i=1

�
(~ri)

2 � 2~ri � ~RCM + (~RCM )2
�+

=

=

*
1

N

NX
i=1

(~ri)
2 � 2~RCM � 1

N

NX
i=1

~ri + (~RCM )2

+
=

*
1

N

NX
i=1

(~ri)
2 � 2~RCM � ~RCM + (~RCM )2

+
=

=

*
1

N

NX
i=1

(~ri)
2 � (~RCM )2

+
=

1

2

*
2

N

NX
i=1

(~ri)
2 � 2

N2

NX
i=1

NX
j=1

~ri � ~rj
+

since
PN

j=1(~ri)
2 = N(~r2i ), we have

R2
G =

1

2

*
2

N2

NX
i=1

2X
j=1

(~ri)
2 � 2

N2

NX
i=1

NX
j=1

~ri � ~rj
+
=

=
1

2N2

*
NX
i=1

NX
j=1

(~ri)
2 +

NX
i=1

NX
j=1

(~rj)
2 �

NX
i=1

NX
j=1

2(~ri � ~rj)
+
=

=
1

2N2

NX
i=1

NX
j=1



(~ri � ~rj)

2
�

Here, we can use that

~ri � ~rj =

iX
m=1

~um �
jX

n=1

~un =

iX
m=j+1

~um

and so



(~ri � ~rj)

2
�
=

iX
m=j+1

iX
n=j+1

h~um � ~uni = l2
iX

m=j+1

iX
n=j+1

�mn = l2(i� j � 1 + 1) = l2(i� j)

And therefore

R2
G =

1

2N2

NX
i=1

NX
j=1



(~ri � ~rj)

2
�
=

l2

2N2

*
NX
i=1

NX
j=1

(i� j)

+

We can move the one half into the expectation value by doing the summation only over half of the terms,
which can be achieved by turning the limit of the second sum to i, i.e.

R2
G =

l2

N2

*
NX
i=1

iX
j=1

(i� j)

+
=

l2

N2

*
NX
i=1

i2 �
NX
i=1

iX
j=1

j

+

we can use that
PN

j=1 j =
N(N+1)

2 to �nd

R2
G =

l2

N2

*
NX
i=1

i2 �
NX
i=1

i(i+ 1)

2

+
=

l2

N2

*
1

2

NX
i=1

i2 � 1

2

NX
i=1

i

+

Using
PN

i=1 i
2 = N(N+1)(2N+1)

6 , we have

R2
G =

l2

2N2

�
N(N + 1)(2N + 1)

6
� N(N + 1)

2

�
=
l2(N + 1)

12N
(2N + 1� 3) =

=
l2(N + 1)(N � 1)

6N
=
l2N

6
� l2

6N
and for big N , which is common for polymers,

RG =
l
p
Np
6

(21)
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4.2 Gaussian Chain

Suppose we have a chain of completly randmoly oriented bonds with Gaussian distribution in length, which
is

pb(~um) =
e
� 1

2
j~umj2

l2=3q�
2� l

2

3

�3
where l2 is the variance of bond length, and the factor of 1

3 ensures that the variance of < (~um)
2 >=<

u2mx > + < u2my > + < u2mz > evaluates to l3.
We can express the probability that the mth step taken us ~un as

p(~un) =

�
d3umpb(~um)�(~um � ~un)

and if we are interested in N consecutive steps that will lead us to displacement vector ~rN , we can express
this as

p(~rN ) =

�
d3u1pb(~u1)

�
d3u2pb(~u2):::

�
d3uNpb(~uN )�

 
~rN �

NX
i=1

~ui

!

We can notice that this is a convolution. A convolution of functions f and g is de�ned as

(f � g)(y) =
�
dxf(x)g(y � x)

Hence, convolution of three functions is

(h � (f � g))(y) =
�
dzh(z)(f � g)(y � z) =

�
dzh(z)

�
dxf(x)g(y � z � x) =

=

�
dzh(z)

�
dxf(x)g(y � x� z) = (h � f � g)(y)

where we can drop the brackets as we can see that the convolution is commutative. Hence, general convo-
lution of functions f1(x1); :::; fN (xN ) with function g is

(f1 � f2 � ::: � fN � g)(y) =
�
dx1f(x1)

�
dx2f(x2):::

�
dxNf(xN )g

 
y �

NX
i=1

xN

!

Therefore
p(~rN ) = (pb � pb � ::: � pN � �)(~rN )

We can remember that a particular property of the Fourier transform is that it turns transforms of convo-
lutions into products of transforms of the functions. Therefore, the Fourier transform of p(~rN ) is

~p(~qN ) = (~pb(~qN ))
N ~�(~qN )

where ~q is the conjugate variable of. The Fourier transform of � function is

~�(~rn) =

�
d3rNe

�i~rn�~qn�(~rN ) = 1

Therefore, we have
~p(~qN ) = (~pb(~qN ))

N

The Fourier transform of a Gaussian distribution is a Gausiann distribution with the inverse variance and
without the normalization constant, i.e.

~pb = e�
1
2

j~qN j2

3 l2

Hence

~p(~qN ) = e�
1
2

jqN j2

3 l2N

Therefore, the inverse Fourier transform will give us the Gaussian again, this time as

p(~rN ) =
e
� 1

2

jrN j2

Nl2=3q�
2�Nl

2

3

�3
which leads to < ~rN >= 0 and < ~r2N >= Nl2 - same as before.
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4.3 Lattice Chain

Suppose we have a 3D lattice on which the monomers can exist. Lets start building our polymer from
monomers, starting at position ~x = 0. In each building step, we can move along the lattice in either
direction with eqaul probability. We are searching for probability distribution p(~x;N) which gives the
probability that a polymer of length N ends at ~x. To �nd it, we will consider how p changes as we change
N , i.e. lets try to �nd p(~x;N + 1) � p(~x;N). The probability that a polymer of length N + 1 ends at ~x
is given by the di�erence of (probability of all paths leading to neighbouring lattice points in N steps that
will lead to ~x in N + 1st step) and the probability of paths leading to the lattice point ~x in N steps. This
is because if the path ends at ~x in N steps, the polymer in the next step must move away, and therefore
cannot end at ~x. For a simple cubic lattice, each lattice point has 6 nearest neighbours. Therefore the
change that the next building step from a lattice point neighbouring ~x will result into going to ~x is 1

6 . The
probability of polymer ending at neighbouring lattice point at Nth step is simply given by the probability
distribution. For a cubic lattice with length l, the �rst probability in the di�erence is therefore

1

6
�
�
p(~x� l̂i; N) + p(~x+ l̂i; N) + p(~x� lĵ; N) + p(~x+ lĵ; N) + p(~x� lk̂; N) + p(~x+ lk̂; N)

�
The second probability is simply p(~x;N). Therefore, the total probability change in the event when polymer
ends at ~x in N + 1st step is

p(~x;N + 1)� p(~x;N) =

=
1

6
�
�
p(~x� l̂i; N) + p(~x+ l̂i; N) + p(~x� lĵ; N) + p(~x+ lĵ; N) + p(~x� lk̂; N) + p(~x+ lk̂; N)

�
�p(~x;N) =

=
1

6

�
p(~x+ l̂i; N)� 2p(~x;N) + p(~x� l̂i; N) + :::

�
We can recognize these expressions as numerical schemes for second derivatives. Therefore, in the limit of
small l, we can write

p(~x;N + 1)� p(~x;N) =
1

6

�
@2p

@x2
+
@2p

@y2
+
@2p

@z2

�
l2 =

l2

6
r2p

Furthermore, we can rewrite that for big N

@p

@N
=
l2

6
r2p

This is a di�usion equation, which can be solved given the boundary and initial conditions. Typically, we
could use p(~x; 0) = �(~x) as the initial condition, because a polymer with zero bonds is just a monomer
sitting at the origin. Furthermore, the boundary conditions should be that p(1; N) = 0, as the polymer
has only a �nite contour length Nl. This leads to Green's function that is Gaussian, and given that our
initial condition is a point source, we again have a Gaussian probability distribution

p(~x;N) =
e
� 1

2
j~xj2

Nl2=3q
(2�Nl

2

3 )3

The reason why we always encounter the normal distribution is the central limit theorem - any distribution
that is sampled in big numbers eventually tends towards the normal (Gaussian) distribution.

4.4 Force on Polymers

The polymer is in the canonical ensemble and we assume that it has no internal energy U . Therefore, the
Helmholtz free energy is

F = U � TS = �TS
Using Boltzmann de�nition of entropy

S = kB ln


for a given state when the polymer has N bonds and ends at ~rN , we have

F = �TS(~rN ; N) = �kBT ln
(~rN ; N) = �kBT ln(p(~rN ; N)
0)
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where 
0 is the total number of available microstates to the polymer. Therefore, we can write

F = �kBT ln p(~rN ; N)� kBT ln
0

If we exert a force on the polymer, we are changing its free energy by doing work. The force ~T is given in
terms of change of energy as

~T = �rF = � @F

@j~rN j r̂

where I used the fact that p(~rN ; N) depends only on the size of ~rN in our case. For Gaussian distribution

F = �kBT
�
�3

2

j~rnj2
Nl2

�
+ F0

where F0 = �kBT ln
0 + kBT
3
2 ln

�
2�Nl

2

3

�
is the term constant with j~rnj. Therefore

~T = �3kBT

Nl2
j~rnjr̂ = �3kBT

Nl2
~rn

therefore the polymer behaves like a spring.
This description have some good qualitative predictions - for example, as we heat up the polymer, the
spring constant rises, so the polymer that has a force acting on it tends to reduce in size when we heat
it. However, it does allow for unrestricted displacement ~rN . We know that the maximum value of the
displacement should be the countour length Nl.
This can be in fact build into the theory via the statistical mechanics approach.

4.4.1 Contour Length Enforcement

We can de�ne the energy stored in the polymer from the expression derived above approximately as

E = �~T � ~rN = tl

NX
i=1

t̂ � ûi = tl

NX
i=1

cos(�i)

where t is the magnitude of the force and �i is the angle between the ith bond of the polymer and the
vector of the force. The partition function is then

Z =
X

(~�)

e��tl(
PN

i=1 cos(�i))

where ~� is a vector of all �i for a given microstate. Since we allow for all orientations of each bond, we have
a continuum of microstates, and therefore, we have to do integration. We can choose our scale to be 1 in
this case, as we will be integrating the full solid angles, and therefore, we have

Z =

�
4�

sin �1d�1d�1

�
4�

sin �2d�2d�

�
4�

:::

�
4�

sin �Nd�Nd�Ne
��tl(

PN
i=1 cos(�i))

where each integration runs over the full solid angle. We can recognize that

sin �id�id�i = �d(cos �i)d�

and that

e��tl(
PN

i=1 cos(�i)) =

NY
i=1

e��tl cos(�i)

and therefore we can factorize the partition function as

Z =

NY
i=1

�
4�

e��tl cos(�i)(�1)d(cos �i)d� = (2�)N (�1)N
NY
i=1

� �1

1

e��tlzdz =

= (2�)N (�1)N
NY
i=1

��
e�tl � e��tl

� 1

�tl

�
= (�1)N

�
4� sinh(�tl)

�tl

�N
= (�4�)N sinhcN (�tl)
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Therefore, the free energy is

F = �kBT lnZ = �kBT ln(sinhN (�tl))+kBT ln((�tl)N )+F0 = �NkBT ln(sinh(�tl))+NkBT ln(�tl)+F0

where F0 = �kBT (�4�)N is a part independent of t. From our original expression for F , we can expect
that the expectation value of the extension < j~rN j > will be equal to

< j~rN j >= �@F
@t

= Nl coth(�tl)� N

�t
= Nl

�
coth(�tl)� 1

�tl

�

So

< j~rN j >= Nl

�
coth(�tl)� 1

�tl

�
(22)

This means that as t!1, < j~rN j >! 1, while around zero

coth(�tl) � 1

�tl
+

1

3
�tl

and so

< j~rN j >� 1

3
N�tl2

t =
3kBT

Nl2
< j~rN j >

which is what we derived earlier. We therefore have a self-consistent theory of the polymer under a force
that enforces the contour length as the maximum displacement of the polymer.

4.5 Polymer Close to a Wall

If a polymer is close to a wall that it cannot enter, we need to manipulate p in order to re
ect these
boundary conditions. In the simple case of 1D, we still have the polymer probability density governed by
the di�usion equation, only this time it has form

@p

@n
=
l2

2

@2p

@x2

If the boundary is a plane at x = 0, we can use method of mirror charges to enforce the boundary conditions.
Lets say the polymer starts at x = x0 > 0. If there was no boundary present, the probability density would
be simply the Green's function in 1D for this problem, i.e.

p(x;N; x0) =
1

(2�Nl2)
1
2

e�
(x�x0)

2

2Nl2

where the factors of 1=3 disappear as we are in 1D, and so does the exponent in the normalization factor
change to 1

2 . We can enforce p(0; N) = 0 by setting mirror distribution as

p(x;N) = p(x;N; x0)� p(x;N;�x0)
If we assume that x0 is small, this can be approximated as

p(x;N) � 2x0
@p

@x0

���
x0=0

= 2x0
1

(2�Nl2)
1
2

1

Nl2
xe�

x2

2Nl2 =

r
2

�

1

(Nl2)
3
2

xx0e
� x2

2Nl2

This distribution is not normalized, but can be normalized by setting

1 =

� 1

0

p(x;N)dx

I will not do the normalization here, but I will state that the �rst moment of the distribution is

< x >=

r
�

2
l
p
N

hence the polymer tends to get away from the wall. This is why so called polymer brushes are created.
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5 Brownian Motion

There are two perspectives for the Brownian motion - the macroscopic perspective, using the Fokker-Planck
equation, and the microscopic perspective, using Langevin equation. We will brie
y discuss both.

5.1 Fokker-Planck Equation

Assume there is a concentration of particles c(~x; t) free to di�use through some medium. The concetration
is normalised as �

V

d3c(~x; t) = N(V; t)

where N(V; t) is the total number of particles present at time t within volume V .
Suppose that in the bulk of the material, the particles cannot be destroyed. Therefore, the continuity
equation applies for them

@c

@t
= �r �~j

where ~j(~x; t) is the 
ux density of particles.
During the di�usion, we experimentally know that the particles tend to di�use away from the high concen-
tration regions. We can try to incorporate this behaviour by making the 
ux density proportional to the
opposite of the gradient of c, i.e.

~j = �Drc (23)

This is called the Fick's �rst law. Applying it to the continuity equation leads to

@c

@t
= Dr � rc = Dr2c (24)

This is again the di�usion equation. However, besides the contribution to ~j due to gradient of concentration,
there migh also be external forces acting on the particles. Lets suppose that the collisions of the particles
within the medium are so frequent that the force only manages to accelerate the particles towards some
drift velocity

~v =
~F




where 
 is the drag coe�cient. We should note that in typical instances of Brownian motion, this steady
state is reached within microseconds from the force application. Hence, we will have an extra 
ux of
particles due to the drift

~jD = c~v = c
~F




For a conservative force, we can express it as a gradient of a scalar potential, i.e.

~jD = �crV



where ~F = �rV and V is the potential. Hence, the total 
ux density is

~j = �Drc� c
rV



which leads to modi�ed di�usion equation

@c

@t
= Dr � (rc+ c



rV ) (25)

This is the Fokker-Planck equation. It is an equation quite di�cult to solve, but we will use it mainly to
determine the di�usion coe�cient D.
We expect that at equilibrium, the concentration pro�le of the particles will copy the Boltzmann distribution
in space due to the potential V . Therefore, in equilibrium, we expect

c = c0e
��V (~r)
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where c0 normalizes the distribution. In equilibrium, the concentration does not change anymore and there
are no currents. This means that

~j = �Drc� c



rV = 0

DrC = � c



rV

But, given our de�nition of equilibrated c

rc = r(c0e��V ) = ��c0e��VrV = ��crV

and so
Drc = �D�crV = � c



rV

D =
kBT



(26)

We have therefore determined the di�usion coe�cient by making sure it is consistent with our expectations
from thermodynamics.

5.1.1 Di�usion Motion

The di�usion motion can be determined by solving the di�usion equation in the absence of potential V . In
1D, we can look at the polymer solutions of di�usion equation to determine that the mean square distance
di�used by the particles will be p

< x2 > � < x >2 =
p
2Dt

Therefore, to di�use to average distance x, the particles need time

t =
x2

2D

while if the particle would move balistically, they need time

tB =
x

v

This means that there is a critical time

tC =
x2

2D
=


x2

2kBT

below which the di�usive transport is more e�ective than the ballistic transport.

5.2 Langevin Equation

In the microscopic description, each particle propagates balistically but is under the e�ect of the random
force due to collisions with other particles and the force due to drag. We can write this down in terms of
stochastic (random) variables as the Newton's second law

~f � 
 _~x+ ~� = m�~x (27)

where ~f is the external (deterministic) force, 
 is the drag coe�cient and ~� is the stochastic force, which
changes with time. This is called the Langevin equation. The question is how to formulate the collision
force ~� in terms of probability distributions, so that we can derive probability distributions for ~x(t).

5.2.1 Form of Random Force

Classical choice for �(t) is the Gaussian white noise. This is de�ned as uncorrelated sampling from the

Gaussian distribution for each of the components of ~�. The reason behind this is again central limit theorem
- if the collisions are frequent, independent of the distribution of each collision, the overall distribution from
the collisions will tend towards Gaussian distribution.
We de�ne the properties of � as follows

~�(t) = (�x; �y; �z)
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where each of the numbers are drawn from the Gaussian distribution. Furthermore, we require that

< ~� >= 0

i.e. the Gaussian distributions for the components are all centered on zero and

< ~�2 >= A

where A is some magnitude of the random force, to be determined by external models. We assume that �
is uncorrelated in time and in components, i.e.

< (~�)i(t1)(~�(t2))j >= A�ij�(t1 � t2)

Also, we assume that the noise produced by � is white in the sense that all frequencies are present in
variation of � - the Fourier transform is a 
at line.
The easiest way to formulate some speci�c example is then to take the case of zero external force. In this
case, the Langevin equation becomes

m�~x = �
 _~x+ ~�

The expectation values of these quantities are then (as � is uncorellated variable)

m
d2 < ~x >

dt2
= �
 d < ~x >

dt
+ < ~� >= �
 d < ~x >

dt

d2 < ~x >

dt2
= � 


m

d < ~x >

dt
which has a solution

d < ~x >

dt
/ e�



m t

Therefore, we predict that the expectation of the displacement of the particles decays over time - the longer
we observe the particle, the more probable it becomes that it returns to its starting spot again.

5.2.2 Massless Brownian Particle

Consider now a case when the forces are strong enough that the inertia of the particle does not play a
signi�cant role. Then, we have the massless Langevin equation

~f + ~� = 
 _~x (28)

In the absence of the external force, this can be integrated as

~x(t) = ~x(t0) +

� t

t0

~�



dt

Hence, the mean square displacement of the massless particle in time t� t0 will be

< j~x(t)� ~x(t0)j2 >=
*� t

t0

dt
~�(t)



�
� t

t0

dt0
~�(t0)




+
=

� t

t0

� t

t0

< ~�(t) � ~�(t0) >

2

dtdt0

Using the correlation property of � as we de�ned it earlier

< ~�(t) � ~�(t0) >=
3X
i=1

< �i(t)�i(t
0) = 3A�(t� t0)

And therefore

< j~x(t)� ~x(t0)j2 >=
� t

t0

� t

t0

3A�(t� t0)


2
dtdt0 =

� t

t0

3A


2
dt =

3A(t� t0)


2

Compairing this with the result for di�usion equation (24) in 1D, we have

6D(t� t0) = 3A
t� t0

2

where we have extra factor of 3 because we are working in three dimensions

A = 2D
2 = 2
kBT




2

and so we have determined consistency criterion for the Langevin model as

A = 2kBT
 (29)

34


	Classical Thermodynamics
	Laws of Thermodynamics
	Zeroth Law
	First Law
	Second Law
	Third Law

	Legendre Transformations
	Loss of Information
	Formal Legendre Transforms

	Fundamental Equation of Thermodynamics
	Fundamental Thermodynamic Relation Out of Equilibrium

	Thermodynamical Potentials
	Microcanonical Ensemble
	Pressure Reservoir
	Sealed Container
	Grand Canonical Potential

	Maxwell Relations
	Graphical Aid for Finding Maxwell Relations


	Statistical Mechanics
	Ensembles in Statistical Physics
	Microcanonical Ensemble
	Canonical Ensemble
	Grand-Canonical Ensemble

	General Ensemble
	Infinite Many States


	Phase Transitions
	Conditions on Phase Transitions
	Number of Coexisting Phases
	Triple Point of Water
	Ends of Coexistence Lines

	First Order Phase Transitions
	Variable Concentrations in Gibbs Ensemble
	Characterization of First Order Transitions

	Continuous Phase Transitions
	p-V diagrams and Metastability
	Lever Rule

	General Continuous Phase Transitions
	Properties of Continuous Phase Transitions

	Spontaneous Symmetry Breaking
	Ising Model
	Ising Model Close to Transition
	Caveats of Ising Model

	Ginzburg-Landau Spontaneous Symmetry Breaking Phase Transitions
	Asymmetric Free Energy


	Polymers
	Freely Jointed Chain
	Gaussian Chain
	Lattice Chain
	Force on Polymers
	Contour Length Enforcement

	Polymer Close to a Wall

	Brownian Motion
	Fokker-Planck Equation
	Diffusion Motion

	Langevin Equation
	Form of Random Force
	Massless Brownian Particle



