
PX384 - Electrodynamics Revision Guide

1 Special Relativity

In order to understand the dynamics of electromagnetic particles and �elds, we need to develop a fully
relativistic viewpoint on the electric and magnetic �elds. Before we start with this formalism, we will
expand a bit more on the subject of special relativity itself.

1.1 Lorentz Transformations & Spacetime Intervals

Our starting point for the special relativity are of course equations known as Lorentz transformations.
These mix together the temporal and space coordinates of a certain event, depending on some velocity ~v.
Their form is, for ~v parallel to the x axis

ct0 = 
(ct� �x) (1)

x = 
(x� �ct) (2)

where c is the speed of light, t and x are the original coordinates of the event, t0 and x0 are the transformed
coordinates of the event, and

� =
v

c


 =
1p

1� �2
=

1q
1� v2

c2

The other coordinates in this special case remain unchanged, i.e. y0 = y and z0 = z.
These transformations have a particular property of not changing the d'Alembertian operator - the wave
operator - for electromagnetic radiation, which moves at phase speed of c. The operator for such waves has
form
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where r2 is the Laplacian operator. Using the chain rule, we can determine
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But, given the de�nition of 
, 
2(1� �2) = 1, and therefore
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Since y and z remain unchanged, we can state that � = �
0 - the d'Alembertian is invariant under this

transformation. Normally, this would be but a speci�c mathematical property of speci�c operator. But,
d'Alembertian has a very central role to a good proportion of classical physics. To show this, consider
Maxwell equations in vacuum

r � ~E = 0

r � ~B = 0

r� ~E = �@ ~B

@t

r� ~B =
1

c2
@ ~E

@t
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Taking curl of the third equation

r� (r� ~E) = r(r � ~E)�r2 ~E = � @

@t
r� ~B

Substituting in from the �rst (r � ~E = 0) and fourth equation (r� ~B = 1
c2

@ ~E
@t )

�r2 ~E = � 1

c2
@2 ~E

@t2

So �
1

c2
@2

@t2
�r2

�
~E = � ~E = 0

By starting with the curl of the fourth equation, we could also derive � ~B = 0. But since the operator does
not change under Lorentz transformations, it seems that these transformations do not change the physics
of electromagnetism in vacuum.
The proper interpretation of the Lorentz transformations was later provided by Einstain, as transformations
into a reference frame moving at velocity ~v relative to the starting frame.
Lorentz transformations can be also regarded in a somewhat di�erent mathematical viewpoint if we notice
that coe�cients 
 and � follow


2 � 
2�2 = 
2(1� �2) = 1

1� 
2�2


2
= 1� �2 =

1


2

This is the same behaviour that we could achieve by setting 
 = cosh(�) and 
� = sinh(�), so that
cosh2(�)� sinh2(�) = 1 and 1� tanh2(�) = 1

cosh2(�)
. The Lorentz transformations then take form (again,

for ~v k x)

ct0 = cosh(�)ct� sinh(�)x

x0 = cosh(�)x� sinh(�)ct

This looks somewhat like some kind of rotation of coordinates when we include time as one of the coordi-
nates. Minkowski later comes with the idea of spacetime - including the time as a spatial coordinate in a
mathematical space that describes the physical world with 4 di�erent coordinates (4 dimensional space). If
we are to declare this spacetime a proper space, we need to know its geometry, or at least some notion of
distance in this space. This distance should be invariant under the rotations of the real space coordinates
and under Lorentz transformations. We know that in Euclidian space (which for now will be the starting
point, although not even the 3 dimensional space is in fact Euclidian) has notion of distance described by
the sum of squares of the di�erence of spatial coordinates between two points - if we have coordinates for
point 1 and 2 in two rotated systems of coordinets S and S0, the expression

D2 = (x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2 = (x01 � x02)

2 + (y01 � y02)
2 + (z01 � z02)

2

So, we expect that the expression for the distance of two points in our new spacetime should still have this
part in and then some additional part, mixing together other coordinates. So, we expect that the distance
s is something like

s2 = F (ct1; x1; y1; z1; ct2; x2; y2; z2) + (x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2

where F is some unknown function. It should follow that this d is invariant under Lorentz transformations.
To satisfy this requirement, we can calculate how original distance D changes under Lorentz transforma-
tions. Since the Lorentz transformations are linear in the coordinates, we can see that the di�erences
transform in the same way as coordinates themselves, i.e. that

(ct01 � ct02) = 
((ct1 � ct2)� �(x1 � x2))

(x01 � x02) = 
((x1 � x2)� �(ct1 � ct2))

(y01 � y02) = (y1 � y2)

(z01 � z02) = (z1 � z2)
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Writing �x = x1 � x2 and similarly for other coordinates, we then have

(D0)2 = �(x0)2 +�(y0)2 +�(z0)2 = 
2(�x2 � 2�c�x�t+ �2c2�t2) + �y2 +�z2

Then, we can notice that
c2�(t0)2 = 
2(c2�t2 � 2�c�x�t+ �2�x2)

And therefore that

c2�(t0)2 � (D0)2 = 
2(1� �2)c2�t2 � 
2(1� �2)�x2 ��y2 ��z2 = c2�t2 �D2

And therefore we can set the "distance" in the spacetime as

s2 = c2�t2 ��x2 ��y2 ��z2 (3)

Commonly, we also speak of the interval with respect to the origin of the coordinate system, which is an
event at the origin of spatial coordinate system happening at time t = 0, for which we simply have

s2 = c2t2 � x2 � y2 � z2

It is important to notice that this interval is also invariant when considering it in in�nitesimal distances
between the points, i.e. we can set

(ds)2 = c2(dt)2 � (dx)2 � (dy)2 � (dz)2

This result leads to many interesting results, mainly, we can directly see that the time � that passes in the
frame of reference where certain particle is not moving compares to the time t passed for the particle in
the frame in which it is moving at speed v is given (as dx = dy = dz = 0 in the so called rest frame of the
particle) by

c2(d�)2 = c2(dt)2

s
1� (dx)2 + (dy)2 + (dz)2

c2(dt)2
= c2(dt)2

r
1� v2

c2

� = t

r
1� v2

c2
(4)

This time is called the proper time and has the speci�c property of being independent of reference frame,
as for particles which do have a rest frame, we are always able to determine their proper time.
Since we have a notion of distance in this spacetime and we have transformations that mix the coordinates
of an event together and conserve this distance, we have essentially a similar thing to a vector in 3D - a set
of coordinates which express something that is independent of our reference frame. Indeed, we call the set
of these 4 numbers a fourvector (or 4-vector).

1.2 Fourvectors

Fourvectors is essentially any set of 4 variables which satis�es the following conditions

1. The four variables have the same dimensions

2. The four variables transform in the same way as (ct; x; y; z), both in Lorentz transformations and in
purely spatial transformations such as rotation

Clearly, (ct; x; y; z) is a fourvector.
In relativistic calculations, fourvectors tend to have a special notation, where we assign a letter to each
fourvector and access its components by di�erent indices. For the interval, we assign it usually a letter x
and assign indices as x0 = ct, x1 = x, x2 = y and x3 = z. To de�ne the Lorentz invariant,

s2 = (x0)2 � (x1)2 � (x2)2 � (x3)2

we introduce a notational trick by setting a di�erent type of index, de�ned as x0 = x0, x1 = �x1, x2 = �x2
and x3 = �x3, so that

s2 =

3X
�=0

x�x�

3
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Usually, we further condense the notation by application of so called Einstain summation convention. This
convention states that if we see a product of two numbers given by the same indices, we instead see it as a
sum of products over the di�erent possible values of the indices, ranging from 0 to 3, i.e.

x�x
� $

3X
�=0

x�x
�

Fourvectors also commonly relate somehow to the 3D spatial vectors. Sometimes, it is therefore useful to
write fourvectors as

a� = (a0;~b)

where ~b is some 3D vector.

1.2.1 Finding fourvectors

Other ways how to �nd fourvectors is usually by derivation from other fourvectors. For example, if we have
a scalar - a single Lorentz invariant variable - we can multiply some fourvector by this variable to receive a
new fourvector. Similarly, we could do other operations that involve this scalar, for example di�erentiation
with respect to this scalar.
One other way to show that certain set of 4 numbers b� is a fourvector is by showing that the alternative
of scalar product with a fourvector a� produces a Lorentz invariant. The scalar product can be taken as
a�b�, which can be expressed as

a�b� = a0b0 � a1b1 � a2b2 � a3b3 = I

If we know for sure that I is invariant, it means that in di�erent reference frame

a0
0

b0
0 � a1

0

b1
0 � a2

0

b2
0 � a3

0

b3
0

= I

Notice that I am writing the indices as primed instead of fourvectors as primed - this is to emphasize
the fact that the fourvector is something more than just a set of numbers, as it represents some Lorentz
invariant. Compairing these two expressions and substituting transformations of a�, which we know is a
fourvector, leads to

a0b0 � a1b1 � a2b2 � a3b3 = 
(a0 � �a1)b0
0 � 
(a1 � �a0)b1

0 � a2b2
0 � a3b3

0

Moving all the expressions to the left hand side, we are left with

a0(b0 � 
(b0
0

+ �b1
0

))� a1(b1 � 
(b1
0

+ �b0
0

))� a2(b2 � b2
0

)� a3(b3 � b3
0

) = 0

Which de�nitely applies when
b0 = 
(b0

0

+ �b1
0

)

b1 = 
(b1
0

+ �b0
0

)

b2 = b2
0

b3 = b3
0

which is the inverse of Fourier transforms. Since we can choose any initial reference frame for a�, these
equations are in fact required, as di�erent components of a� can be di�erent numbers. This means that b�

is also a fourvector.

1.2.2 Fourtensors

Fourtensors are linear maps that map fourvectors and other fourtensors onto each other. Usually, they are
designated by two or more indices, such as F�� or T�

� . In Einstain summation convention, we tend to sum
out indices as follows

T��x� = T�0x0 + T�1x1 + T�2x2 + T�3x3 = y�

but we only do this if the indices are on opposite positions - up and down, also called contravariant (up)
and covariant (down) indices. This is because only this kind of operation usually leads to a meaningful
fourvector, scalar or fourtensor as a result.

4
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In fact, we can clasify the fourtensors into orders by the number of indices they have. Zeroth order
fourtensors are then scalars, �rst order fourtensors are fourvectors etc. Importantly, we can describe second
order fourtensors as matrices, and expressions such as T��x� as matrix multiplication, although we have to
be careful. Matrix multiplication is de�ned as AB =

P
j AijBjk where i indexes rows in A, j columns in

A and rows in B and k indexes columns in B. So, if we have fourtensor ��
� and fourtensor T�� , expressed

in matrix form as � with � indexing rows and � columns, and T with � indexing rows and � columns, the
summation convention can be rewritten in matrix form only with use of transposes as

��
�T

�� = T(�)T

Sometimes, the fourtensors have some symmetry, allowing for easy calculation of the transposes, other
times it is not a useful way how to make the problems easier for calculation. Notice also that the order
in matrix multiplication matters, and can be di�erent from the order in summation convention, which is
essentially irrelevant.

1.2.3 Metric Tensor

Metric tensor is a special tensor in the relativity which describes how distances or magnitudes are derived
in this formalism. We de�ned the distance as s2 = x�x� where x� is the interval fourvector (I will now
start calling it fourposition, with name interval reserved exclusively for di�erences of two fourpositions).
We can then de�ne the metric tensor g�� as linear map of the fourposition on scalars as

s2 = x�g��x
�

which leads to g��x
� = x�. Here, we can see other typical property of fourtensors - they transform

contravariant components onto covariant and vice-versa. To have an intuitive de�nition, we also require
that

s2 = x�g
��x�

so that g��x� = x�. In our case, for special relativity, we can describe g�� = ��� as

��� = �0��0� � �1��1� � �2��2� � �3��3�

where �ij is the Kronecker delta. This special metric tensor �
�� is called the Minkowski metric. This means

that ��� is non-zero only on the diagonal, and is equal to 1 for � = � = 0 and �1 for other components on
the diagonal.
This also directly means that ��� is symmetrical - if we represent it by a matrix �

� =

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA

where � indexes rows and � columns, �T = �. This can be also understood as ��� = ���. Also, we can see
that from the de�nition of covariant and contravariant components, the e�ect of ��� and ��� is exactly the
same, so

��� = ���

Finally, we provide some usefull identities:

����
�
 = �
�

where �
� is the identity operation (matrix), which ofcourse satis�es �
� = �
� = �
� = 1. Also

���T
�� = T�

�

1.2.4 Lorentz Transformation Tensor

Lorentz transformation tensor ��0

� that transforms from reference frame S to reference frame S0 as

x�
0

= ��0

� x�

5
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In the matrix form, we can express

��
� =

0
BB@


 ��
 0 0
��
 
 0 0
0 0 1 0
0 0 0 1

1
CCA

where � indexes rows and � columns and we have ~v k x. We can also transform fourtensors, but we need
to transpose both components of the fourtensor as

T�0�0

= ��0

� ��0

� T
��

This leads to notion that even though Lorentz transformation tensor is very important, it is not a fourtensor
- there is no meaning in transforming Lorentz transform.
The important properties of this tensor is notibly its symmetry - ��

� = ��
�. Lastly, we can use the Lorentz

transformation to show that the metric tensor is independent of frame of reference, as

��
0�0

= ��0

� ��0

� �
�� = ��0

� �����0

� =

=

0
BB@


 ��
 0 0
��
 
 0 0
0 0 1 0
0 0 0 1

1
CCA
0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA
0
BB@


 ��
 0 0
��
 
 0 0
0 0 1 0
0 0 0 1

1
CCA =

=

0
BB@


 ��
 0 0
��
 
 0 0
0 0 1 0
0 0 0 1

1
CCA
0
BB@


 ��
 0 0
�
 �
 0 0
0 0 �1 0
0 0 0 �1

1
CCA =

=

0
BB@


2 � �2
2 0 0 0
0 �2
2 � 
2 0 0
0 0 �1 0
0 0 0 �1

1
CCA =

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA = ���

Hence we have shown that ��
0�0

= ��� - metric tensor is frame independent.

1.3 Acceleration and Forces

In order to study relativistic dynamics, we would like to rewrite something like Newton's second law in
relativistic approach. We start by de�ning velocity fourvector u�

u� =
dx�

d�

where x� is the fourposition and � is the proper time. We know that (see (4))

� = t

r
1� v2

c2
= t
p
1� �2 =

t




hence
d

d�
=

dt

d�

d

dt
= 


d

dt

So

u� = 


�
d(ct)

dt
;
dx

dt
;
dy

dt
;
dz

dt

�
= 
 (c;~v)

where ~v is the 3D velocity. Fourvelocity is a fourvector as we derived it from the fourposition using only
scalar operations. We can check that its magnitude is Lorentz invariant

u�u� = 
2(c2 � v2) = c2
2
�
1� v2

c2

�
= c2
2(1� �2) = c2

where v = j~vj. Speed of light is indeed a Lorentz invariant.
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Having determined the fourvelocity, we can move onto the fourmomentum, which we simply take to be
p� = mu�, where m is the rest mass of the object - the mass in its rest frame. I will not be repeating the
rest mass calculations here, but I will simply state that it is a Lorentz invariant which can be determined
as m2c4 = E2 � p2c2, where E is the total energy of the particle and p is the 3-momentum of the particle
in a certain frame of reference. We can also derive that

p�p� = m2u�u� = m2c2 =
E2

c2
� p2

If we notice that
p� = mu� = (
mc; 
m~v) = (
mc; ~p)

where ~p is the 3D relativistic momentum (derived in �rst year), we clearly see that 
mc = E
c , which is

what we expect for the total energy. Hence, we can also state that four momentum is

p� =

�
E

c
; ~p

�

Now, we can move forward to describe the force. Again, via correspondence principle, we de�ne fourforce
as

f� =
dp�

d�

Using the de�nition of p� and �

f� = 

dp�

dt
= 
m

�
c
d


dt
;
d(
~v)

dt

�
Here

d


dt
=

1

(1� �2)
3

2

�
��1

2

�
(�2�)d�

dt
= 
3�

a

c
= 
3

~v � ~a
c2

where ~a is the classical 3D acceleration, ~a = d~v
dt . Also

d(
~v)

dt
=

d


dt
~v + 


d~v

dt
= 
3

~v � ~a
c2

~v + 
~a

Hence

f� =

�
mc
4

~v � ~a
c2

;m
4
~v � ~a
c2

~v +m
2~a

�
(5)

To check whether this is truly a fourvector, consider taking a scalar product with fourvelocity

f�u� = m
du�

d�
u� = m

du�

d�
���u

�

As ��� is time independent, we can write

f�u� = m���
du�

d�
u�

But, consider that

���
d(u�u�)

d�
= ���u

� du
�

d�
+ ���u

� du
�

d�
= u�

du�

d�
+ u�

du�

d�
= 2u�

du�

d�
= 2���u

� du
�

d�

Hence

f�u� =
m

2
���

d(u�u�)

d�
=

m

2

d(u����u
�)

d�
=

m

2

d(u�u�)

d�

And since u�u� = c2, which is time independent, we have

f�u� = 0 (6)

Besides being a Lorentz invariant, this result should be somewhat reassuring. Classicaly, if we found
that the magnitude of velocity does not change by an action of a force, we would expect the force to act
perpendicularly to the velocity vector. This would cause the cartesian scalar product of the force and the
velocity to go to zero. As the magnitude of the fourvelocity u�u� does not change, it is a nice result that
the scalar product in the fourvector notation with the fourforce also results in zero.
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Finally, (5) gives a kinematical de�nition of fourforce - it uses velocities and accelerations. We are, however,
also interested in the dynamical description of the fourforce with relation to 3D dynamical variables. To
discover these, consider the expression for fourmomentum

p� =

�
E

c
; ~p

�

Then

f� =
dp�

d�
= 


d

dt

�
E

c
; ~p

�
= 


�
1

c

dE

dt
;
d~p

dt

�
Taking scalar product with u� then leads to

f�u� = 0 = 
(
1

c

dE

dt
;
d~p

dt
) � (
c;�
~v)

where � symbolizes simple scalar product (without swapping signs for spatial parts). Therefore, we have


2
�
dE

dt
� ~v � d~p

dt

�
= 0

This is satis�ed when
dE

dt
= ~v � d~p

dt
= ~v � ~F

where ~F is the 3D (but relativistic) force. This is a known relation for the power acting on a system, so
again, we have good consistency with classical mechanics.
Therefore, we can condense the dynamic description of fourforce as

f� =
�

c
~v � ~F ; 
 ~F

�
(7)

2 Relativistic Particle Motion

We will now develop an aparatus to describe a relativistic particle motion due to electromagnetic forces,
while assuming that the form of these forces does not change relativisticly. The starting point is the Lorentz
force

~F = q( ~E + ~v � ~B)

Therefore, the relativistic force caused by this 3D force is

f� = (



c
~F � ~v; 
 ~F )

Therefore, we can write

f0 =
q


c
~v � ( ~E + ~v � ~B) =

q


c
~v � ~E

as ~v � (~v � ~B) = 0. So, in components of ~v and ~E

f0 = q(
vx)
Ex

c
+ q(
vy)

Ey

c
+ q(
vz)

Ez

c

The spatial components of the force are, in components

f1 = 
qEx + 
qvyBz � 
qvzBy = q(
c)
Ex

c
+ q(
vy)Bz + q(
vz)(�By)

f2 = q
Ey + q
vzBx � q
vxBz = q(
c)
Ey

c
+ q(
vx)(�Bz) + q(
vz)Bx

f3 = q
Ez + q
vxBy � q
vyBx = q(
c)
Ez

c
+ q(
vx)By + q(
vy)(�Bx)

In all of these components, we can see some scalar charge q, some components of the fourvelocity u� =
(
c; 
~v) and some coe�cients de�ned by electromagnetic �elds. Since all expressions are linear in all these
terms, we suspect that we might be able to describe the force via some fourtensor as

f� = qF�
�v

�
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The � is intentionally indented to indicate that � indexes rows and � columns in the matrix form (this is
unneccessary for ��

� or ��� , as these matrices are symmetric, so switching rows and columns has no e�ect,
while for general matrix, it is important to distinguish these). In this form, we would have

f0 = qF 0
0
c+ qF 0

1
vx + qF 0
2
vy + qF 0

3
vz

By comparison with expression we derived from the Lorentz force, we can see that F 0
0 = 0, F 0

1 = Ex

c ,

F 0
2 =

Ey

c and F 0
3 =

Ez

c . Similarly, we can see that

f1 = qF 1
0
c+ qF 1

1
vx + qF 1
2
vy + qF 1

3
vz

F 1
0 =

Ex

c
; F 1

1 = 0 ; F 1
2Bz ; F

1
3 = �By

f2 = qF 2
0
c+ qF 2

1
vx + qF 2
2
vy + qF 2

3
vz

F 2
0 =

Ey

c
; F 2

1 = �Bz ; F
2
2 = 0 ; F 2

3 = Bx

f3 = qF 3
0
c+ qF 3

1
vx + qF 3
2
vy + qF 3

3
vz

F 3
0 =

Ez

c
; F 3

1 = By ; F
3
2 = �Bx ; F

3
3 = 0

Therefore, we can write the fourtensor as

F�
� =

0
BB@

0 Ex

c
Ey

c
Ez

c
Ex

c 0 Bz �By
Ey

c �Bz 0 Bx
Ez

c By �Bx 0

1
CCA

This tensor is the called the Faraday tensor, and it describes the dynamics of a charged particle in an
electromagnetic �eld. We can therefore write the relativistic formulation of Lorentz force as

f� = qF�
�u

�

Preferrably, we would like to have F�� , i.e. the form when both indices are contravariant. To achieve this,
consider the unit operation 1 = ������

f� = qF�
��

�����u
� = q���F�

����u
� = qF��u�

Therefore, we can write

f� = qF��u� (8)

with

F�� = ���F�
� = F�

��
�� =

0
BB@

0 Ex

c
Ey

c
Ez

c
Ex

c 0 Bz �By
Ey

c �Bz 0 Bx
Ez

c By �Bx 0

1
CCA
0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA

F�� =

0
BB@

0 �Ex

c
�Ey

c
�Ez

c
Ex

c 0 �Bz By
Ey

c Bz 0 �Bx
Ez

c �By Bx 0

1
CCA (9)

Before moving on, we should note that the Faraday Tensor is a legitimate fourtensor, as it maps a fourvector
on a fourvector and will be Lorentz transformable. Furhtermore, it is a anti-symmetric tensor, so F�� =
�F ��, which of course requires F�� = 0, and in this case this applies without summation convention (i.e.
for any � rather than for the sum F 00 + F 11 + :::).

9
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2.1 Static Fields

For static �elds, the Lorentz force equation can be expressed as a static matrix di�erential equation.

f� = m
du�

d�
= qF��u�

du�

d�
=

q

m
F��u� =

q

m
F�
�u

�

Suppose that we now express u� in terms of eigenvectors of q
mF�

� , called U�. Then

u� = c�U �
�

where c� is some vector of coe�cients for eigenvectors. Therefore, the equation becomes

d

d�
(c�U �

� ) =
q

m
F�
�(c

�U �
� ) = c�

q

m
F�
�U

�
�

Since U� are eigenvectors of q
mF�

� , we can say that

q

m
F�
�U

�
� = ��U

�
�

where �� is the vector of eigenvalues corresponding to the eigenvectors (no summation here). Therefore,
the equation becomes

d

d�
(c�U �

� ) = c���U
�
�

Since the �elds are static, we can assume that the eigenvectors and eigenvalues are static as well, which
leaves us with

U �
�

dc�

d�
= U �

� ��c
�

Since for most matrices, the eigenvectors are orthogonal, we can further say that

dc�

d�
= ��c

�

with no summation. This is a simple di�erential equation, leading to

c� = A�e���

where A� are integration constants. Therefore, we have

u� = A�e���U �
� (10)

where the sum runs over �.

2.1.1 Uniform �eld motion

Consider only electric �eld in only x direction, i.e. only F 1
0 = F 0

1 =
Ex

c components of Faraday tensor are
non-zero. Therefore, the eigenvectors of q

mF�
� can be determined as eigenvectors of0

BB@
0 qEx

mc 0 0
qEx

mc 0 0 0
0 0 0 0
0 0 0 0

1
CCA

These can be determined from the secular equation� q

m
F�
� � ���

�
�

�
U�
� = 0

Starting with determination of the eigenvalues

0 = j q
m
F�
� � ���

�
� j =

��������
��� qEx

mc 0 0
qEx

mc ��� 0 0
0 0 ��� 0
0 0 0 ���

��������
= (��)

2

���� ��� qEx

mc
qEx

mc ���

���� = (��)
2

�
(��)

2 � q2E2
x

m2c2

�

10
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Hence we have two degenerate solutions for �� = �0 = 0. These correspond to eigenvectors

U �
2 =

0
BB@

0
0
1
0

1
CCA

and

U �
3 =

0
BB@

0
0
0
1

1
CCA

The other two non-degenerate solutions have eigenvalues �� = � qEx

mc . The eigenvectors can be found from

0
BB@
� qEx

mc
qEx

mc 0 0
qEx

mc � qEx

mc 0 0
0 0 0 0
0 0 0 0

1
CCA
0
BB@

U0
�

U1
�

U2
�

U3
�

1
CCA =

0
BB@

0
0
0
0

1
CCA

We can see that these equations are satis�ed for

U0
� = �U1

�

Hence we have other two orthogonal eigenvectors

U �
0 =

0
BB@

1
1
0
0

1
CCA

and

U �
1 =

0
BB@

1
�1
0
0

1
CCA

with eigenvalues �0 =
qEx

mc and �1 = � qEx

mc . Therefore, the solution for the fourvelocity is

u� =

0
BB@

A0eqEx�=(mc) +A1e�qEx�=(mc)

A0eqEx�=(mc) �A1e�qEx�=(mc)

A2

A3

1
CCA

Suppose that our initial conditions are u� = (
(0)c; 0; 
(0)vy; 
(0)vz). These can be satis�ed by setting

A0 = A1 = 
(0)c
2 , A2 = 
(0)vy, A

3 = 
(0)vz. Then

u� =

0
BBBB@


(0)c cosh
�
qEx�
mc

�

(0)c sinh

�
qEx�
mc

�

(0)vy

(0)vz

1
CCCCA

Now, we have a velocity described in terms of proper time, but not in terms of time passed in the original
reference frame. Therefore, we need an expression for the proper time � in terms of the time t. Easiest way

to obtain this is by integrating u0 = d(ct)
d� , which leads to (assuming that t = 0 is the starting point)

ct =

�
d�
(0)c cosh

�
qEx�

mc

�
=


(0)mc2

qEx
sinh

�
qEx�

mc

�

Therefore

� =
mc

qEx
sinh�1

�
qExt


(0)mc

�

11
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As

cosh

�
qEx�

mc

�
= cosh

�
sinh�1

�
qExt


(0)mc

��
=

s
1 + sinh2

�
sinh�1

�
qExt


(0)mc

��
=

s
1 +

q2E2
xt

2


(0)2m2c2

fourvelocity is

u� =

0
BBB@


(0)c
q
1 +

q2E2
xt

2


(0)2m2c2


(0)c qExt

(0)mc


(0)vy

(0)vx

1
CCCA

From de�nition of fourvelocity, we have


 =
u0

c
= 
(0)

s
1 +

q2E2
xt

2


(0)2m2c2

and therefore the real space velocity is

~v =
1




0
@ u1

u2

u3

1
A =

0
BBB@

c qExtp

(0)2m2c2+q2E2

xt
2

vy

(0)mcp


(0)2m2c2+q2E2
xt

2

vz

(0)mcp


(0)2m2c2+q2E2
xt

2

1
CCCA

We should notice that as t!1, vx ! c and vy; vz ! 0 - the transverse velocities are gradually reduced.

2.2 Field Transformations

Since Faraday tensor is a proper fourtensor, we can use Lorentz transformation to obtain the expressions
for the �elds ~E and ~B in a moving frame of reference. We use

F�0�0

= ��0

� ��0

� F
�� = ��0

� F����0

� =

=

0
BB@


 �
� 0 0
�
� 
 0 0
0 0 1 0
0 0 0 1

1
CCA
0
BB@

0 �Ex

c
�Ey

c
�Ez

c
Ex

c 0 �Bz By
Ey

c Bz 0 �Bx
Ez

c �By Bx 0

1
CCA
0
BB@


 �
� 0 0
�
� 
 0 0
0 0 1 0
0 0 0 1

1
CCA =

=

0
BB@


 �
� 0 0
�
� 
 0 0
0 0 1 0
0 0 0 1

1
CCA
0
BB@


�Ex

c �
Ex

c
�Ey

c
�Ez

c


Ex

c �
�Ex

c �Bz By



Ey

c � 
�Bz 
Bz � 
�
Ey

c 0 �Bx


Ez

c + 
�By �
By � 
�Ez

c Bx 0

1
CCA =

=

0
BBBB@

0 
2(�2 � 1)Ex

c 

�
�Bz � Ey

c

�
�
 ��By +

Ez

c

�

2(1� �2)Ex

c 0 
(�Bz + �
Ey

c ) 
(By + �Ez

c )



�
��Bz +

Ey

c

�


�
Bz � �

Ey

c

�
0 �Bx



�
�By +

Ez

c

�


��By � �Ez

c

�
Bx 0

1
CCCCA

Using 
2(1� �2) = 1 and � = vx
c , we can write

F�0�0

=

0
BBB@

0 �Ex

c �

c (Ey � vxBz) �


c (Ez + vxBy)
Ex

c 0 �
(Bz � vxEy

c2 ) 
(By +
vxEz

c2 )


c (Ey � vxBz) 


�
Bz � vxEy

c2

�
0 �Bx



c (Ez + vxBy) 


��By � vxEz

c2

�
Bx 0

1
CCCA

Hence we have
E0
x = cF 1000

= Ex

the �eld parallel to the velocity of the new frame remains unchanged. For the components perpendicular
to x, following vector identity follows

~E0
? = 
 ~E? + 
~v � ~B

12
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Similarly, the component of ~B parallel to the velocity ~v remains unchanged

B0
x = Bx

and the components perpendicular transform as

~B0
? = 
 ~B? � 


~v � ~E

c2

2.2.1 Spin-Orbit Coupling

Consider a particle moving in a frame of reference S at velocity ~v. In this frame, only ~E �eld exists, i.e.
~B = 0. However, in the rest frame of the particle, additional ~B0 �eld occurs

~B0 = �
~v �
~E

c2
� �~v �

~E

c2

for non-relativistic approximation. This is the formula used for derivation in quantum physics of atoms.

2.2.2 Ampere's Law

Consider a particle moving in positive z direction along a cylindrical wire which carries current I in the
positive z direction. This creates magnetic �eld ~B = �0I

2�r �̂, where �̂ is the unit vector in the azimuthal
direction and r is the distance of the particle from the wire. Therefore, the force on the particle is (as

electric �eld ~E = 0)

F = q~v � ~B = qv
�0I

2�r
ẑ � �̂ = ��0qvI

2�r
r̂

Lets say that the current I is created by charges drifting at the same speed as the particle - by speed v
in positive z direction. Then, in the rest frame of the particle, the charges are stationary and no ~B �eld
exists. However, there is extra electric �eld created in perpendicular direction

~E0
?;extra = 
~v � ~B

Therefore, there is an extra force on the particle due to electrostatic interaction

~F 0 = 
q~v � ~B = �
 �0qvI
2�r

r̂

Therefore, in non-relativistic limit, the behaviour of the particle will be the same in both frames of reference,
as ~F 0 � ~F .

3 Relativistic Description of Electromagnetic Fields

Now that we have described the motion of a particle in an electromagnetic �eld, we need to describe how
these �elds are created in the �rst place. To make a useful description, we need to rewrite Maxwell equations
in the relativistic formalism. To be able to do this, we need to develop a few tools for handling the �elds.
Lets start by de�ning a fourgradient - a di�erential operator de�ned as

@� =

�
@

@(ct)
;r
�

where r is the 3D gradient. To see whether this is a true fourvector, consider taking a scalar product
(e�ective fourdivergence) with a fourposition

@�x
� =

@(ct)

@(ct)
+

@x

@x
+

@y

@y
+

@z

@z
= 4

This is de�nitely a Lorentz invariant, and therefore fourgradient is a valid fourvector. We should note the
contravariant-covariant switch implied - @� = @

@x� and inversly

@� =
@

@x�
=

�
@

@(ct)
;�r

�

13
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Importantly, we can now de�ne the d'Alembertian (wave) operator as

� = @�@� =
@2

@(ct)2
�r2 =

1

c2
@2

@t2
�r2

Since the wave operator is created by scalar product of two fourvectors, it is e�ectively the magnitude of the
fourgradient, and we can therefore see what we proved in the very beginning, that is that the d'Alembertian
is invariant under Lorentz transformation.
Last thing we need to mention is the Levi-Civita symbol, which will help us describe 3D vector products
in index notation. Levi-civita symbol �ijk for indices i; j; k 2 f0; 1; 2; 3g is equal to 1 for (i; j; k) = (1; 2; 3)
and for any cyclic permutation of this order. Furthermore, it is equal to -1 for (i; j; k) = (2; 1; 3) and any
cyclic permutation of this order. For any other combination, mainly if either i = j or j = k, the symbol
goes to 0. As a consequence, exchanging two indices leads to an exchange of the sign of Levi-Civita symbol
(hence, exchanging the order twice leads to no change of the sign). With these tools prepared, we can start
to translate the Maxwell equations and the constituent relations into relativistic language.

3.1 Continuity Equation

The continuity equation is particularly easy to spot as a starting point. It can be rewritten as

0 =
@�

@t
+r �~j = @(c�)

@(ct)
+r �~j = @�j

�

where � is the charge density, ~j is the current density and we newly de�ned the fourcurrent j� = (�c;~j).
Since the scalar product of the fourcurrent with fourgradient goes to zero, we can see that fourcurrent is a
valid fourvector. Therefore, we have a relativistic description of the sources of electromagnetic �elds. Now,
we must relate this fourvector to the Faraday tensor via Maxwell equations.

3.2 Maxwell Equations

First Maxwell equation is

r � ~E =
�

�0

where �0 is the permittivity of vacuum. Since F 00 = 0, we can write

r � ~E = @0F
00 + c@1F

10 + c@2F
20 + c@3F

30 =
�

�0
= �0c

2� = �0cj
0

Hence, since @0F
00 = 0 = c@0F

00

c@�F
�0 = �0cj

0

@�F
�0 = �0j

0

So, we assigned the time-part of the fourcurrent, now we need to assign the space part. This will be due
to some vector equation, speci�cally due to fourth Maxwell equation. It states that

r� ~B = �0~j +
1

c2
@ ~E

@t

In the x component (writing ( ~B)z = Bz and similarly for other components and vectors)

@2Bz � @3By = �0jx +
1

c2
@Ex

@t

@

@(ct)

�
�Ex

c

�
+ @2Bz � @3By = �0jx

Since F 11 = 0, @1F
11 = 0 and

�0jx = @0F
01 + @1F

11 + @2F
21 + @3F

31

@�F
�1 = �0j

1

14



PX384 - Electrodynamics Revision Guide

we could continue on to show that same identity applies in other components of fourth Maxwell equation,
leading to a result

@�F
�� = �0j

� (11)

This is completed translation of the source equations, however, there are other two Maxwell equations that
put restraints on ~E and ~B. The second Maxwell equation is

r �B = 0

@1Bx + @2By + @3Bz = 0

�@1F 23 � @2F
31 � @3F

12 = 0

Using components of F�� rather than components of F�� and multiplying the equation by -1, we obtain

@1F23 + @2F31 + @3F12 = 0

Here, I used that
F�� = ������F

�� = ���F
����� =

=

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA
0
BB@

0 �Ex

c
�Ey

c
�Ez

c
Ex

c 0 �Bz By
Ey

c Bz 0 �Bx
Ez

c �By Bx 0

1
CCA
0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA =

=

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA
0
BB@

0 Ex

c
Ey

c
Ez

c
Ex

c 0 Bz �By
Ey

c �Bz 0 Bx
Ez

c By �Bx 0

1
CCA =

0
BB@

0 Ex

c
Ey

c
Ez

c
�Ex

c 0 �Bz By
�Ey

c Bz 0 �Bx
�Ez

c �By Bx 0

1
CCA

Multiplying the equation by 2, we have

@1(F23 + F23) + @2(F31 + F31) + @3(F12 + F12) = 0

Finally, using the anti-symmetry of the Faraday tensor

@1(F23 � F32) + @2(F31 � F13) + @3(F12 � F21) = 0 (12)

We can de�nitely recognize the structure of the vector product in this sum, but in order to be able to describe
it with Levi-Civita symbol, we need to further explore third Maxwell equation in all its components. The
third Maxwell equation is

r� ~E = �@ ~B

@t

r� ~E +
@ ~B

@t
= 0

In x component
@2Ez � @3Ey + c@0Bx = 0

@2F
30 � @3F

20 + @0F
32 = 0

�@2F30 + @3F20 + @0F32 = 0

�@2F30 � @3F02 � @0F23 = 0

Multiplying by -2 and using anti-symmetry of F��

@0(F23 � F32) + @2(F30 � F03) + @3(F02 � F20) = 0 (13)

In y component
@3Ex � @1Ez + c@0By = 0

@3F
10 � @1F

30 + @0F
13 = 0

�@3F10 + @1F30 + @0F13 = 0

@0F13 + @1F30 + @3F01 = 0
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@0(F13 � F31) + @1(F30 � F03) + @3(F01 � F10) = 0 (14)

In the z component
@1Ey � @2Ex + c@0Bz = 0

@1F
20 � @2F

10 + @0F
21 = 0

�@1F20 + @2F10 + @0F21 = 0

�@0F12 � @1F20 � @2F01 = 0

@0(F12 � F21) + @1(F20 � F02) + @2(F01 � F10) = 0 (15)

By adding equations (12)-(15) together, we obtain

@0(F12 � F21 + F13 � F31 + F23 � F32) + @1(F20 � F02 + F30 � F03 + F23 � F32)+

+@2(F01 � F10 + F30 � F03 + F31 � F13) + @3(F01 � F10 + F02 � F20 + F12 � F21) = 0

This can be summarized by the Bianchi identity

@�F�
���
 = 0 (16)

3.3 Potentials

Classically, when we solve Maxwell equations, we do so with the use of electromagnetic potentials - scalar
potential � and vector potential ~A. Lets refresh our memory quickly - ~A is de�ned based on the second
Maxwell equation, as the fact that r � ~B = 0 dictates that there exists ~A such that

~B = r� ~A

Substituting this into the third Maxwell equation

r� ~E = � @

@t
r� ~A

r� ( ~E +
@ ~A

@t
) = 0

Since ~E+ @ ~A
@t is curl free �eld, it implies that it is equal to gradient of some scalar function. In correspondence

with electrostatics, this is de�ned to be r(��), where � is the scalar potential. Therefore

~E = �r�� @ ~A

@t

Substituting this result into the �rst Maxwell equations yields

�r2�� @

@t
r � ~A =

�

�0

And from the fourth Maxwell equation

r(r � ~A)�r2 ~A = �0~j +
1

c2

 
�@2 ~A

@t2
� @r�

@t

!

This can be either reorganized as

r(r � ~A) = r2 ~A+ �0~j � 1

c2
@2 ~A

@t2
� 1

c2
r@�

@t

or as

1

c2
@2 ~A

@t2
�r2 ~A = �0~j �r

�
1

c2
@�

@t
+r � ~A

�
(17)
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We can substitute the �rst form into the �rst Maxwell equation if we take a gradient of the �rst Maxwell
equation

�r(r2�)� @

@t
r(r � ~A) = r

�
�

�0

�

�r
�
r2�+

�

�0

�
= � @

@t

 
1

c2
@2 ~A

@t2
�r2 ~A� �0~j

!
�r

�
1

c2
@2�

@t2

�

r
�
1

c2
@2�

@t2
�r2�� �

�0

�
= � @

@t

 
1

c2
@2 ~A

@t2
�r2 ~A� �0~j

!
(18)

We can notice that both of these equations can be signi�cantly simpli�ed, if we �x the gauge invariance by
requiring the so called Lorenz gauge condition

1

c2
@�

@t
+r � ~A = 0 (19)

This causes equation (17) to become simply

� ~A = �0~j (20)

which in turn modi�es (18) to

�� =
�

�0
(21)

We therefore have two decoupled symmetrical wave equations.

3.3.1 Ensuring Gauge Condition

Consider now that we have some � and ~A that do not satisfy the Lorenz gauge condition (19), and we have

1

c2
@�

@t
+r � ~A = f

where f is some scalar �eld. Using the gauge transformations, we can transform to equivalent potentials
�0 and ~A0 which do satisfy the gauge condition. The gauge transformations are

�0 = �� @�

@t

~A0 = ~A+r�
where � is the scalar gauge. Substituting back to the de�nition of f .

f =
1

c2
@�0

@t
+

1

c2
@2�

@t2
+r � ~A0 �r2�

Since in the new gauge, we assume that the Lorenz gauge condition is satis�ed, we are left with

1

c2
@2�

@t2
�r2� = f

�� = f

Therefore, if the gauge condition is not satis�ed, we can �nd a corresponding gauge � for gauge transfor-
mation by solving a wave equation, which is generally solvable. Therefore, we do not need to worry too
much about the possibility of transforming into Lorenz gauge, knowing that we could always solve a wave
equation to ensure that we are indeed working in the Lorenz gauge.
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3.4 Fourpotential

We can notice that the Lorenz gauge can be rewritten as

1

c2
@�

@t
+r � ~A =

@

@(ct)

�
�

c

�
+r � ~A = @0

�

c
+ @1Ax + @2Ay + @3Az = @�A

� = 0

Where A� =
�
�
c ;

~A
�
is a newly de�ned fourvector - so called fourpotential. Again, the scalar product with

the fourgradient - which is a fourvector - results in 0 in Lorenz gauge, which is de�nitely a Lorentz invariant.
Hence fourpotential is a valid fourvector. We now need to relate the fourpotential to the Faraday tensor.
This can be done as

F�� = @�A� � @�A� (22)

We clearly see that this is a anti-symmetrical combination, so basic requirements on form of F are satis�ed.
For the electric �eld components (a 2 f1; 2; 3g)

Ea = cF0� = c@0Aa � c@aA0 = �r�� @ ~A

@t

as expected. And, just to check, the magnetic �eld component

Bx = F32 = @3A2 � @2A3 =
@

@y
Az � @

@z
Ay = (r� ~A)x

as expected.
We can now substitute this into the equations (11) and (16) to �nd out the form of relativistic Maxwell
equations in potential form. The �rst substitution leads to

@�F
�� = �0j

�

@�(@
�A� � @�A�) = �0j

�

�A� � @�(@�A
�) = �0j

�

where I used @�@
� = �. In the Lorenz gauge, @�A

� = 0, hence

�A� = �0j
� (23)

summarizes both �rst and fourt Maxwell equations in terms of the fourpotential and fourcurrent. The
Bianchi identity becomes

@�(@�A
 � @
A�)���
 = 0

(@�@�A
 � @
@�A�)���
 = 0

But, since the indices in @�@�A
 and @
@�A� are just cyclic permutations of each other, we know that

@�@�A
���
 = @
@�A����


And therefore we have that for any A�, the Bianci identity is satis�ed. This means that we can summarize
all of �eld equations in a single wave equation (23).
Therefore, all of electrodynamics can be summarized in terms of fourpotential A� as

�A� = �0j
�

F�� = @�A� � @�A�

@p�

@�
= qF��u�

These three equations form a complete relativistic theory of electrodynamics.
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3.5 Solving the Fourpotential Wave Equation

The wave equation is solved by Green's function method. This involves Fourier transforming de�nition of
the Green's function

�G(x�; (x0)�) = �(x� � (x0)�)

This leads to two possibilities for the Green's function

G(x�; (x0)�) =
1

4�j~r � ~r0j�(c(t� t0)� j~r � ~r0j)

where x� = (ct; ~r) and ~r is the position vector. We usually choose the minus solution, as the plus solution
would imply that events that happen in some time later than t can in
uence an event taking place at time
t. We call this solution the causal solution. Note that this decision is purely based on our expectations,
and in fact is not mathematically neccessary.
The fourpotential that solves the wave equation is then

A�(x�) =

�
d4(x0)�G(x� ; (x0)�)�0j

�((x0)�)

A�(x�) =

�
d4(x0)�

�0j
�((x0)�)

4�j~r � ~r0j �(c(t� t0)� j~r � ~r0j) =
�

d3r0
�0j

�
�
t� j~r�~r0j

c ; ~r0
�

4�j~r � ~r0j
Hence

A�(t; ~r) =

�
d3r0

�0j
�
�
t� j~r�~r0j

c ; ~r0
�

4�j~r � ~r0j (24)

However, this is a somewhat hybrid description, as we describe a fourvector in terms of 3D vectors. We
can factor this dependence out by writing the Green's function in relativistic terms as

G =
1

2�
� [(x� � (x0)�)(x� � (x0)�)] �(c(t� t0))

where � is the Heapside step function (1 for non-negative argument, 0 everywhere else). Then

A�(x�) =

�
d4(x0)�

�0j
�((x0)�)

2�
� [(x� � (x0)�)(x� � (x0)�)] �(c(t� t0)) (25)

This description is hybrid only due to our requirement of causality, encapsulated in the Heapside step
function factor.

3.6 Fields of Moving Charged Particle

Consider a charge q moving at fourvelocity (up)
� at fourposition (xp)

� . The fourpotential due to the charge
movement at position x� is

A�(x�) =
�0
2�

�
d4(x0)�j�((x0)�)� [(x� � (x0)�)(x� � (x0)�)] �(c(t� t0))

Relating to last years mathematical module, it can be shown that

�
g(x)�(f(x))dx =

X
i

g(xi)��� dfdx ���xi
where xi are the positions of zeros of f(x). Lets start with the integration with respect to time coordinate
(x0)0 = ct0. The zero in the Dirac delta function occurs when c2(t� t0)2 = (xa � (x0)a)2 where a runs over
spatial indices. Due to Heapside step function, only the positive solution of f = 0 is taken into account,
leaving us with zero at ct0 = ct�j~r�~r0j, where j~r�~r0j =

p
(xa � (x0)a)2 (the sum is inside the square root

and a runs only over the spatial indices). Therefore, the fourpotential is

A�(x�) =
�0
2�

�
d3(x0)�

2
4 j�((x0)�)��� d

d(ct0) ((x
� � (x0)�)(x� � (x0)�))

���
3
5
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where the square brackets indicate that the expression is taken at the retarded time t0 = t� j~r�~r0j
c . Here

d

d(ct0)
(x� � (x0)�)(x� � (x0)�) =

1

c

d� 0

dt0
d

d� 0
(x� � (x0)�)(x� � (x0)�)

where � 0 is the proper time of the charge moving. Therefore

dx�

d� 0
= 0

d(x0)�

d� 0
= (u0)�

d� 0

dt0
=

1




And thus

d

d(ct0)
(x� � (x0)�)(x� � (x0)�) =

2

c


�
dx�

d� 0
� d(x0)�

d� 0

�
(x� � (x0)�) = �2 1


c
(u0)�(x� � (x0)�)

And therefore

A�(x�) =
�0c

2�

�
d3(x0)�

�

j�((x0)�)

2(u0)�(x� � (x0)�)

�
Since we are interested in point charge, the current density has form

j�((x0)�) = q(c;~v)�3((x0)� � (xp)
�) = q

1



(up)

��3((x0)� � (xp)
�)

where (xp)
� is the actual position of the particle. Hence

A�(x�) =
�0c

2�

"

q 1


 (up)
�

2(up)�(x� � (xp)�)

#
=

�0qc

4�

�
(up)

�

(up)�(x� � (xp)�)

�

Taking the required derivatives than leads to Faraday tensor

F�� =
�0qc

4�

"
((x� � (xp)

�)(up)
� � (x� � (xp)

�)u�)
�
c2 � (x� � (xp)

�)(ap)�
�

((x� � (xp)�)(up)�)3
+

(x� � (xp)
�)(ap)

� � (x� � (xp)
�)(ap)

�

((x� � (xp)�)u�)2

#

Substituting X� = (x� � (xp)
�), (x� � (xp)

�)(up)� = X � up and (x� � (xp)
�)(ap)� = X � ap, where (ap)�

is the fouracceleration of the particle. we can simplify the expression to

F�� =
�0qc

4�

�
(X�(up)

� �X�(up)
�)(c2 �X � ap)

(X � up)3 +
X�(ap)

� �X�(ap)
�

(X � up)2
�

(26)

3.6.1 Electric Field of Uniformly Moving Particle

Consider a particle moving uniformly - a� = 0. Then, the electric �eld is given by

F a0 =
�0qc

4�

�
(Xau0 �X0ua)c2

(X � up)3
�

where a runs over the spatial indices. If we mark ~r and ~rp as 3D positions of the �eld point and the particle
(respectively) and ~v as the 3D velocity of the particle, we have

F a0 =
~E

c
=

�0qc
3

4�

�
(~r � ~rp)
c� c(t� tp)
~v

(X � up)3
�

Taken at the retarded time requires c(t� tp) = j~r� ~rpj. Writing a shorthand ~R = ~r� ~rp, we can also write

X � up = 
c2(t� tp)� 
~v � ~R
Taken at the retarded time

X � up = 
cj~Rj � 
~v � ~R = 
c

 
R� ~v � ~R

c

!
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And thus

~E

c
=

�0qc
3

4�


c
�
~R� R

c ~v
�


3c3
�
R� ~v�~R

c

�3

~E =
�0qc

2

4�

~R� R
c ~v


2
�
R� ~v�~R

c

�3 (27)

Most interesting feature of this �eld is that it behaves as a �eld caused by a particle at position ~R � R
c ~v,

which is the position extrapolated from the position of the particle at the retarded time and the instantaneus
velocity of the particle at that time. This is called the pretorial understanding of the radiation �eld.

Figure 1: The curved line represents the trajectory of the particle, the dashed line is a tangent to the
trajectory hence parallel with instantaneus velocity of the particle. The �eld at some point is given as by
a particle in position predicted by extrapolating the instantaneus velocity.

Lets call the vector of extrapolated particle position ~r = ~R� R
c ~v. We can write

~R = ~r +
R

c
~v

R2 = r2 + 2
R

c
~v � ~r +R2 v

2

c2

R2


2
� 2

R

c
~v � ~r � r2 = 0

R =

2

2

 
2
~v � ~r
c
�
s
4
(~v � ~r)2
c2

+ 4
r2


2

!
= 
2

 
~v � ~r
c
�
s

(~v � ~r)2
c2

+
r2


2

!

Hence

R� ~v � ~R
c

= R� ~v � (~r + R
c ~v)

c
= R

�
1� v2

c2

�
� ~v � ~r

c
=

R


2
� ~v � ~r

c

Substituting for R

R� ~v � ~R
c

= �
s

(~v � ~r)2
c2

+
r2


2


2

 
R� ~v � ~R

c

!2

=

2(~v � ~r)2

c2
+ r2

Decomposing ~r into orthogonal components - one parallel to ~v, rk and other perpendicular to ~v, r?, we
have

~v � ~r = vrk
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and
r2 = r2? + r2k

Hence


2

 
R� ~v � ~R

c

!2

= 
2
v2

c2
r2k + r2k + r2? = r2k(


2

�
1� 1


2

�
+ 1) + r2? = 
2r2k + r2?

And so we can write

~E =
�0qc

2

4�


~r�

2r2k + r2?

� 3

2

Or, in terms of permitivity �0 =
1

�0c2

~E =
q

4��0


~r

(
2r2k + r2?)
3

2

Therefore, �eld in direction parallel to velocity v gets reduced as ~E / 1

2 , while �eld perpendicular to the

velocity v gets enhanced as ~E / 
. This concentrates the radiation generated by the particle in a sort
of disc perpendicular to the particle velocity, propagating in space - this is the generation of relativistic
electromagnetic radiation.

4 Applications of Relativistic Electrodynamics

4.1 Undulator

Undulator is a high precision radiation generator, consisting of an electron accelerator and undulator
chamber, where a magnetic �eld B is set in an stationary pattern where it oscillates as we move through
the chamber with wavenumber k0.
We should note that because the phase of a wave needs to be a Lorentz invariant, we have

� = !t� ~k � ~r = !

c
(ct)� ~k � ~r = x�k�

where k� =
�
!
c ;
~k
�
is a fourwavevector (or wave fourvector). Again, the scalar product with fourposition

is a phase of the wave - Lorentz invariant - hence fourwavevector is a proper fourvector.
Therefore, in a rest frame of the electron incident on the undulator chamber, the magnetic wave transforms
as (for simpli�ed 1D case)

!

c
= 


�!0
c
� �k0

�
= �
�k0

where !0 = 0 is the frequency of the wave in the undulator chamber rest frame. Also

k = 
(k0 � �
!0
c
) = 
k0

In this frame, the electron will then radiate light at frequency !0
L = ! and with wavenumber k0L =

!0

L

c = !
c .

This light can be backwards Lorentz transformed as a wave to obtain the wavenumber and frequency of
the light in the undulator rest frame

!L
c

= 


�
!0
L

c
+ �k0L

�
= 
(1 + �)(�
�k0)

Then, as we can without any loss of generality say that !L = j!Lj

!L = 
2(1 + �)ck0 =

s
1 + �

1� �
ck0

And in high relativistic limit, � ! 1 and !L ! 2
2ck0.
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Figure 2: A oscillating dipole moment is created by current 
owing along z axis from z = �l=2 to z = l=2
periodically, storing oscillating charge q and �q on the opposite ends of the origins of the current.

4.2 Hertzian Dipole Radiation

The fourpotential of the Hertzian dipole can be determined from the hybrid integral representation (24).

A� =
�0
4�

�
d3r0

�
j�

j~r � ~r0j
�

Hence, for the scalar potential

A0 =
�

c
=

�0
4�

�
d3r0

�
c�

j~r � ~r0j
�
=

�0c

4�

0
BB@
q

�
t� j~r� l

2
ẑj

c

�
��~r � l

2 ẑ
�� �

q

�
t� j~r+ l

2
ẑj

c

�
��~r + l

2 ẑ
��

1
CCA

Now, we will assume that the size of the dipole l is relatively small compared to the distance at which we
search for the potential, i.e. l

r � 1. Then

����~r � l

2
ẑ

���� =
s�

~r � l

2
ẑ

�2

=

r
r2 � l~r � ẑ + l2

4
= r

r
1� l cos �

r
+

l2

4r2
� r

r
1� l cos �

r
� r � l cos �

2

Hence

� � �0c
2

4�

0
@q

�
t� r� l cos �

2

c

�
r � l cos �

2

�
q
�
t� r+ l cos �

2

c

�
r + l cos �

2

1
A � 1

4��0

 
� @

@r

 
q
�
t� r

c

�
r

!!
l cos �

Here

� @

@r

q
�
t� r

c

�
r

= �
@q(t�r=c)

@r r � q(t� r=c)

r2

Using
@q(t� r=c)

@r
=

@q(t� r=c)

@(t� r=c)

@(t� r=c)

@r
= �1

c
_q
�
t� r

c

�
where _q is the time derivative of q(t), we arrive at

� =
1

4��0c
l cos �

�
_q(t� r=c)r + cq(t� r=c)

r2

�
=

cos �

4��0c

�
_q
l

r
+ q

cl

r2

�

where square brackets indicate taken at retarded time t� r
c . Since we assumed that r is big, we can neglect

the second part of the expression, so we get

� =
cos �

4��0cr
l[ _q]
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Using de�nition of dipole moment ~p = qlẑ and its magnitude p = ql, we have

� =
cos �

4��0cr
[ _p] (28)

Similarly, we can obtain the vector potential

~A =
�0
4�

�
d3r0

~j(t� j~r�~r0j
c )

j~r � ~r0j =
�0
4�

� l=2

�l=2

dz
_q(t� j~r�~r0j

c )ẑ

j~r � ~r0j � �0
4�

� l=2

�l=2

dz
_q(t� r

c )ẑ

r
=

�0
4�r

l[ _qẑ]

Therefore

~A =
�0
4�r

[ _~p] (29)

Hence the magnetic �eld is (using curl in spherical coordinates, with ~A = Az(r)ẑ = Az(r)(cos �r̂ � sin ��̂)

~B = r� ~A = �̂
1

r

�
@(�rAz(r) sin �)

@r
� @(Az(r) cos �)

@�

�
=

�̂

r

�0
4�

�
� sin �

@

@r
[ _p] + sin �

[ _p]

r

�

Again, we can use

� @

@r
[ _p] = �@(t� r=c)

@r

@

@(t� r=c)
[ _p] =

1

c
[�p]

And thus

~B =
�0�̂

4�

�
sin �

[�p]

cr
+ sin �

[ _p]

r2

�
And since r is again big, we can approximate

~B � �0 sin �

4�rc
[�p]�̂ (30)

Similarly, we can �nd the electric �eld

~E = �r�� @ ~A

@t

Here
@ ~A

@t
=

@(t� r=c)

@t

@ ~A

@(t� r=c)
=

�0
4�r

[�~p] =
�0
4�r

[�p](cos �r̂ � sin ��̂)

and

r� =
@�

@r
r̂ +

1

r

@�

@�
�̂ =

cos �

4��0c

@

@r

 
_p
�
t� r

c

�
r

!
r̂ � [ _p]

4��0cr2
sin ��̂

Using the same di�erentiation and approximation as in the case for @
@r

�
q(t�r=c)

r

�
� �1

c
[ _q]
r , we have

r� � � cos �

4��0c2r
[�p]r̂ � [ _p]

4��0cr2
sin ��̂ � ��0 cos �

4�r
[�p]r̂

as r is big. Therefore

~E = �r�� @ ~A

@t
=

�0 cos �

4�r
[�p]r̂ � �0 cos �

4�r
[�p]r̂ +

�0 sin �

4�r
[�p]�̂

Hence

~E =
�0 sin �

4�r
[�p]�̂ (31)

The Poynting vector is

~N =
1

�0
~E � ~B =

�0
16�2r2c

sin2 �[�p]2�̂ � �̂ =
�0

16�2r2c
sin2 �[�p]2r̂

The energy therefore 
ows radially outwards. To calculate the energy transmitted into the solid angle d
,
we need to calculate corresponding dP

dP = ~N � d~S = ~N � r2d
r̂ = �0
16�2c

sin2 �[�p]2d
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Hence
dP

d

=

�0
16�2c

sin2 �[�p]2

Or, taking the average value
dP

d

=

�0
16�2c

sin2 � < [�p]2 >

Also, we can notice that for oscillatory p,

< [�p]2 >= !2 < [ _p]2 >= !2 < [l _q] >2= !2l2 < I2 >

where I is the current 
owing through the dipole. As !2 = 4�2 c
2

�2

dP

d

=

�0c

4

l2

�2
sin2 � < I2 >

We can recognize �0c =
q

�0
�0

= Z0 � 377
 is the impedance of vacuum. The common way how to adress

di�erential radiation power in description of antennae is to use

dP

d

= Rrad < I2 >

1

4�
G(�; �) (32)

where Rrad is the radiation resistance and G is a gain function, normalized as

� �



G(�; �)d
 = 4�

where the integration runs over the whole solid angle. In our case, we can see that G(�; �) = C sin2 �, where
C is some normalisation constant. Then

4� =

� 2�

0

� �

0

C sin3 �d�d� = 2�C

� �

0

sin3 �d�

Here � �

0

sin3 �d� =

� �

0

sin �
1� cos(2�)

2
d� =

1

2

�� �

0

sin �d� �
� �

0

sin � cos(2�)d�

�
=

=
1

2

�
2�

� �

0

(sin(3�)� sin �)

2
d�

�
=

1

2

�
2 +

1

2

� �

0

sin �d� � 1

2

� �

0

sin(3�)d�

�
=

=
1

2

 
3� 1

2

�
1

3
cos(3�)

�0
�

!
=

1

2

�
3� 1

3

�
=

4

3

Therefore

4� =
8�

3
C

C =
3

2

Therefore, we can rewrite
dP

d

= Rrad < I2 >

3

8�
sin2 �

Comparing this with
dP

d

=

Z0

4

l2

�2
sin2 � < I2 >

Leads to

Rrad =
2�

3
Z0

l2

�2
(33)

Careful analysis of the hertzian dipole problem shows that we infact also need requirement that l � �,
therefore we can see that the overall power transmitted by Hertzian dipole is relatively small.
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We can also make the Hertzian dipole to absorb incident radiation. I will state the antenna reciprocal
theorem without proof now. This combines the angular gain G(�; �) of the given antena (not just Hertzian
dipole) with the incident 
ux of energy Nin to determine the power absorbed by the antenna Pin

Pin = Nin
�2

4�
G(�; �) (34)

where �2 is the wavelength of the radiation. However, this theorem only holds when the impidances
(radiation resistances) are matched. Also, polarization of the incident radiation plays a role - to resolve it,
simply �nd which part of the radiation electric �eld is along the direction of the dipole.
The overall power emmited by the Hertzian dipole is

P =

� �



dP

d

d
 = Rrad < I2 >

1

4�

� �



G(!; �) = Rrad[I]
2 =

2�

3
Z0

l2

�2
< I2 >

We can go back to expression using dipole moment rather than the current, as < I2 >=< _q2 >= !2 < q2 >
And

P =
2�

3
Z0

1

�2
!2l2 < q2 >

and using ! = 2�c
� and Z0 =

1
�0c

P =
1

6��0c3
!4 < p2 > (35)

4.2.1 Rayleigh scattering

We can approximate molecules in the atmosphere for certain range of wavelengths � as Hertzian dipoles
absorbing and reemitting radiation. The total scattering power is the same as for the Hertzian dipole,
and goes as P / ��4 - scattering is much stronger for smaller wavelengths (blue light). As Hertzian
dipoles, molecules can only scatter light into polarization parallel to the axis of the dipole (in electric �eld).
Therefore, if we look at light which travelled horizontally from the Sun and then was scattered at 90 degrees
vertically towards Earth's surface (and our eye), the light should be almost entirely polarized parallel to
the surface and normal to the direction from us to the Sun. As a special case, if we look directly above us
at light scattered in the morning, when the Sun is close to east, the light we observe should be polarized in
the north-south direction.
The Rayleigh scattering is the reason why the sky is observed to be blue - the blue light is the one most
scattered by atmospheric molecules. Also, it is responsible for red sunsets, as in that case, the light travels
longer through the atmosphere and therefore the blue light is scattered out of the spectrum.

4.2.2 Thompson Scattering

When a free electron is displaced by vector ~x from some initial position in matter, it leaves an e�ective
hole behind, creating an e�ective dipole moment ~p = q~x. If the electron is then left to radiate, it radiates
as dipole with power

P =
1

6��0c3
< �p2 >=

1

6��0c3
q2 < a2 >

where a is the acceleration of the electron. We can use this to calculate the power scattering cross-section
of Thompson scattering �T . This is de�ned as

P = �TNin

We can assume that the light incident on the molecule has Nin = j 1�0 ~E � ~Bj = 1
�0c

E2 = �0cE
2 (using

that for light, E = cB). Also, in a simple model, we can assume that the dipole moment is caused by free
electrons accelerated under the electric �eld as

jm~aj = jq ~Ej

where m is the mass of the electron and ~a is the acceleration of the electron. Hence

< �p >2= q2 < a >2=
q4E2

m2
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And therefore, we have identity

P =
1

6��0c3
q4

m2
E2 = �T �0cE

2

e4

6��20c
4m2

= �T

�T =
8�

3

�
e2

4��0mc2

�2

=
8�

3
r20 (36)

where r0 � 2:8fm is the classical radius of an electron.
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