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Introduction

This revision guide for MA259 Multivariable Calculus has been designed as an aid to revision, not a
substitute for it. This guide is useful for revising through key definitions, theorems and some shorter
proofs found in the course. However, a lot of the calculation methods and practical applications of the
content of this module are omitted, for which it would be best to refer to the lectures and the online
notes for said techniques.

Disclaimer: Use at your own risk. No guarantee is made that this revision guide is accurate or
complete, or that it will improve your exam performance.

Authors

Written by Sean Middlehurst.
Based upon the lecture notes for MA259 Multivariable Calculus, written by Dr. Mario Micallef at
the University of Warwick.
Any corrections or improvements should be reported by email to comms@warwickmaths.org.
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1 Preliminaries

1.1 Notation

• x ∈ Rn will denote the n-tuple (x1, . . . , xn), xi ∈ R, 1 ≤ i ≤ n.

• Vectors can either be written as row vectors (x1, . . . , xn) or as column vectors

x1

...
xn

.

• If A : Rn → Rk is a linear map represented by the matrix:

A =

a11 . . . a1n

...
. . .

...
ak1 . . . akn


then y := Ax is obtained my multiplying A on the left by column vector x on the right. Thus:

yi =
n∑
j=1

aijxj

• For vector valued functions f : U → Rk, where U ⊂ Rn, then:

f(x) is shorthand for (f1(x1, . . . , xn), . . . , fk(x1, . . . , xn))

1.2 Distances and Convergence

Definition 1.1. The Euclidean distance between x, y ∈ Rn is denoted by |x− y| and is defined as such:

|x− y| := (

n∑
i=1

(xi − yi)2)1/2, x = (x1, ..., xn), y = (y1, ..., yn).

Definition 1.2. A sequence of vectors xj ∈ Rn, n ∈ N, is said to converge to x ∈ Rn if |xj − x| → 0 as
a sequence in R. Equivalently, xj converges to x if:

∀ ε > 0,∃N ∈ N such that j ≥ N =⇒ |xj − x| < ε.

Definition 1.3. The scalar product x · y, also called the dot product and Euclidean inner product of two
vectors x, y ∈ Rn is defined by:

x · y :=

n∑
i=1

xiyi

Proposition 1.4. The Cauchy-Schwarz inequality states that:

|x · y| ≤ |x||y|

Proof. 0 ≤ ||y|2x− (x · y)y|2 = |y|4|x|2 − (x · y)2|y|2

Definition 1.5. For any nonzero pair of vectors x and y, there exists a unique θ ∈ [0, π], defined as the
angle between x and y, such that:

cosθ =
x · y
|x||y|

Proposition 1.6. (The Triangle Inequality): For all x, y ∈ Rn :

|x+ y| ≤ |x|+ |y|

Proof. |x+ y|2 = (x+ y) · (x+ y) = |x|2 + 2x · y + |y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2
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Corollary 1.7. (Reverse Triangle Inequality): For all x, y ∈ Rn :

||x| − |y|| ≤ |x− y|

Definition 1.8. Other norms of interest:
|x|1 :=

∑n
i=1 |xi|

|x|∞ := max{|x1|, ..., |xn|}

Proposition 1.9. If (xj)j∈N converges to x, then ∃M > 0 such that |xj | ≤M ∀ j ∈ N.

Proof. Given ε > 0,∃N ∈ N such that j ≥ N =⇒ |xj − x| < ε. Reverse Triangle Inequality then gives:

j ≥ N =⇒ ||xj | − |x|| ≤ |xj − x| < ε

This proves (|xj |)n∈N converges to |x|, from which the boundedness of (xj)j∈N follows.

1.3 Open and Closed Sets

Definition 1.10. In Rn, given a ∈ Rn and r > 0, the open ball with centre a and radius r is defined by

B(a, r) := {x ∈ Rn | |x− a| < r}

Definition 1.11. A subset U ⊂ Rn is said to be open if:

∀x ∈ U,∃ r > 0 such thatB(x, r) ⊂ U

A subset E ⊂ Rn is closed if Rn \ E is open.

Proposition 1.12. • An open ball B(a, r) is open.

• Let U1, . . . , Uk be open in M . Then
⋂k
i=1 Ui is open in M .

• The union of any collection of sets open in M is open in M .

Lemma 1.13. E ⊂ Rn is closed if and only if given a sequence (xn)∞n=1 in E which converges to some
point x ∈ Rn, we have x ∈ E.

1.4 Continuity

Definition 1.14. Given a subset U ⊂ Rn, a function f : U → Rk is said to be continuous at p ∈ U , if:

∀ ε > 0,∃ δ > 0 such that (x ∈ U and |x− p| < δ) =⇒ |f(x)− f(p)| < ε

If f is continuous at each x ∈ U , we say that f is continuous.

Just as in R, we can show that f is continuous at x ∈ U iff given any sequence (xn) ⊂ U, (xn)→ x,
we have f(xn)→ f(x).

Proposition 1.15. Given f, g : U → Rk continuous at p ∈ U , α, β ∈ R, then:
αf + βg is continuous at p.
For k = 1, fg is continuous at p, where (fg)(x) := (f(x)) · (g(x)).

Proposition 1.16. If U ⊂ Rn, V ⊂ Rk, f : U → Rk is continuous at p ∈ U, f(U) ⊂ V, g : V → Rm is
continuous at f(p) ∈ V , then g ◦ f : U → Rm is continuous at p.

Proposition 1.17. For U ⊂ Rn, if f : U → Rk is written as f(x) = (f1(x), f2(x), ..., fk(x)), then f is
continuous at p ∈ U if and only if every component fi is continuous at p.

Definition 1.18. Given U ∈ Rn, A ⊂ U is open relative to U if there exists an open subset O ∈ Rn
such that A = O ∩ U.
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Theorem 1.19. A function f : U → Rk is continuous if and only if for every open set V ⊂ Rk, the
preimage f−1(V ) is open relative to U .

Proof. (=⇒) Let V be open in Rk and take x ∈ f−1(V ). Then f(x) ∈ V so, as V is open, there is ε > 0
such that B(f(x), ε) ⊂ V . Since f is continuous at x there exists δ > 0 such that (y ∈ U, |x−y| < δ) =⇒
|f(x)− f(y)| < ε. In other words y ∈ B(x, δ) =⇒ f(y) ∈ B(f(x), ε) ⊂ V . Hence B(x, δ)∩U ⊂ f−1(V ).
Hence f−1(V ) is open relative to U .

(⇐=) Let x ∈ U and ε > 0. B(f(x), ε) is open in Rk so f−1(B(f(x), ε)) is open in U . Furthermore
x ∈ f−1(B(f(x), ε)) so there is δ > 0 such that B(x, δ) ∩ U ⊂ f−1(B(f(x), ε)). In other words (y ∈
U, |x − y| < δ) =⇒ |f(x) − f(y)| < ε so f is continuous at x. Since x ∈ U was arbitrary, f is
continuous.

1.5 Connectedness

Definition 1.20. p ∈ U is an isolated point of U if ∃ ε > 0 such that |x− p| > ε∀x ∈ U \ {p}.

Definition 1.21. Given a function f : U → Rk, a non-isolated point p ∈ U , and l ∈ Rk, we say that
limx→p f(x) = l if:

∀ ε > 0,∃ δ > 0 such that 0 < |x− p| < δ =⇒ |f(x)− l| < ε

Definition 1.22. Let p, q ∈ Rn. A path from a to b in Rn is a continuous map φ : [a, b]→ Rn, [a, b] ⊂ R
such that φ(a) = p and φ(b) = q.

Definition 1.23. U ⊂ Rn is called path connected if any two points in U can be joined by a path in U .

Theorem 1.24. If U ⊂ Rn is path connected and f : U → Rk is continuous, then f(U) is also path
connected.

Proof. Given v, w ∈ f(U),∃ p, q ∈ U such that f(p) = v and f(q) = w. Let r : [a, b]→ U be a path in U
that goes from p to q. Then, by continuity of composition of continuous functions, f ◦r : [a, b]→ f(U) ⊂
Rk is a path in f(U) that joins v and w.

Theorem 1.25. I ⊂ R, is path connected if and only if I is an interval.

Proof. If I is an interval and a, b ⊂ I, a < b then r : [0, 1]→ I defined by r(t) := (1− t)a+ tb is a path
in I joining a and b.

Conversely, if I is path connected and a, b ∈ I, a < b let r : [α, β]→ I be a path in I joining a and b.
Then, by the Intermediate Value Theorem, given t ∈ (a, b),∃ γ ∈ (α, β) such that r(γ) = t. In particular,
t ∈ I, thereby showing that I is an interval.

1.6 Sequential Compactness

Definition 1.26. A set K ⊂ Rn is sequentially compact if every sequence in K has a convergent
subsequence, which converges to a point of K.

Theorem 1.27. If K ⊂ Rn is sequentially compact and f : K → Rk is continuous, then f(K) is
sequentially compact.

Proof. Let (yj)j∈N be a sequence in f(K). Then, for each j ∈ N,∃xj ∈ K such that f(xj) = yj . By
the sequential compactness of K, there exists a convergent subsequence (xj(l))l∈N of (xj)j∈N such that
liml→∞ xj(l) = x ∈ K. By continuity of f at x, liml→∞yj(l) = liml→∞f(xj(l)) = f(x) ∈ f(K), i.e.,
f(K) is sequentially compact.

Theorem 1.28. A subset K ⊂ Rn is sequentially compact if and only if it is closed and bounded.

Proof. (=⇒) If (xk)∞k=1 ⊂ K converges, then any subsequence must converge to the same limit. By
sequential compactness this limit lies in K, and hence by the fact that sets that contain their limits are
closed, K is closed. Furthermore, if K is not bounded, then ∀ k ∈ N, ∃xk ∈ K s.t. ‖xk‖ > k. Hence any
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subsequence of (xk)∞k=1 is not bounded, and hence cannot converge, contradicting K being sequentially
compact. Hence K is bounded.

(⇐=) Take any sequence (xk)∞k=1 in K and write xk = (x1
k, . . . , x

n
k ) for xjk ∈ R. As K is bounded, (xk)

is bounded, so by the Bolzano-Weierstrass Theorem there is a subsequence such that the first component
(x1
ki

) converges. Consider (xki) and take a subsequence of this such that the second component converges.
Repeat n times; the last subsequence converges; since K is closed this limit lies in K.

Theorem 1.29. Let K ⊂ Rn be sequentially compact and let f : K → R be continuous. Then ∃x∗, x∗ ∈
K such that:

f(x∗) ≤ f(x) ≤ f(x∗)∀x ∈ K

Proof. By the previous two theorems, f(K) ⊂ R must be closed and bounded. Thus, M := supf(K)
and m := inff(K) are both finite because f(K) is bounded. Furthermore, m,M ∈ f(K) because f(K)
is closed. The desired result follows immediately.

Corollary 1.30. Let K ⊂ Rn be sequentially compact and let f : K → Rk be continuous. Then
∃x∗, x∗ ∈ K such that:

|f(x∗)| ≤ |f(x)| ≤ |f(x∗)| ∀x ∈ K

Proof. Since x 7→ |x| : Rk → R is continuous (by the triangle inequality ||x| − |y|| ≤ |x − y|), the map
x 7→ |f(x)| : K → R is continuous. The result now follows from the theorem on extreme values.

2 Differentiation

2.1 Linear Algebra

• We denote the space of linear maps. L(Rn,Rk) := {A : Rn → Rk|A is linear.}

• We denote the space of k × n matrices with real entries, M(k × n,R) :=

{

a11 . . . a1n

...
. . .

...
ak1 . . . akn

 |aij ∈ R, 1 ≤ i ≤ k, 1 ≤ j ≤ n}

• L(Rn,Rn) shall be abbreviated to L(Rn).

• There is a linear isomorphism µ : L(Rn,Rk) → M(k × n,R), µ(A) := (aij), where A is such that
for x ∈ Rn:

x =

x1

...
xn

 7→ Ax :=

a11 . . . a1n

...
. . .

...
ak1 . . . akn


x1

...
xn

 ∈ Rk

Definition 2.1. Let A ∈ L(Rn,Rk). The operator norm of A is defined by:

‖A‖ := sup
|x|=1

|Ax| = sup
x∈Rn\{0}

|Ax|
|x|

The following are all properties of the operator norm. Let A,B ∈ L(Rn,Rk) and α ∈ R:

• ‖A‖ = 0 ⇐⇒ A = 0

• ‖αA‖ = |α|‖A‖

• Triangle Inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖

• Composition Bound: If A ∈ L(Rn,Rk) and B ∈ L(Rk,Rm) =⇒ BA ∈ L(Rn,Rm) and
‖BA‖ ≤ ‖B‖‖A‖
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Definition 2.2. Given an open subset U ⊂ Rn, f : U → Rk is (locally) Lipschitz continuous at p ∈ U
if there exists η > 0,M > 0 such that for all x ∈ U ∩ B(p, η):

|f(x)− f(p)| ≤M |x− p|

Definition 2.3. The general linear group over the real numbers, denoted by GL(n,R), is defined by:

GL(n,R) := {(aij) ∈M(n× n,R) : det(aij) 6= 0}

Proposition 2.4. Given A ∈ GL(n,R), set α := 1
‖A−1‖ . If B ∈ L(Rn) and ‖B − A‖ < α then B is

invertible, i.e., the open ball {B ∈ L(Rn) : ‖B −A‖ < α} ⊂ GL(n,R). Furthermore:

‖B −A‖ < α =⇒ ‖B−1‖ ≤ 1

α− ‖B −A‖

Proof. x = A−1(Ax) =⇒ |x| ≤ ‖A−1‖|Ax|, i.e., |Ax| ≥ α|x| ∀x ∈ Rn. Therefore, if x 6= 0 and
‖B −A‖ < α :

|Bx| = |Bx−Ax+Ax| ≥ |Ax| − |(B −A)x| ≥ (α− ‖B −A‖)|x| > 0

i.e., Bx 6= 0. Therefore, ker(B) = {0} and B ∈ GL(n,R). Finally, on replacing x by B−1x as earlier,
we see that:

|x| = |B(B−1x)| ≥ (α− ‖B −A‖)|B−1x|

i.e.,

|B−1| ≤ 1

α− ‖B −A‖
|x| ∀x ∈ Rn

Proposition 2.5. A 7→ A−1 : GL(n,R)→ GL(n,R) is continuous.

Proof. We need to show that, if B is close to A in GL(n,R) then B−1 is close to A−1. So, we consider
A−1 −B−1 = A−1BB−1 −A−1AB−1 = A−1(B −A)B−1. Therefore:

‖A−1 −B−1‖ ≤ ‖A−1‖‖B −A‖‖B−1‖

As above, set α := 1
‖A−1‖ and, given ε > 0, set δ := min{ 1

2α, ε} > 0. Then, from the previous proposition,

we deduce that:

‖B −A‖ < δ =⇒ ‖B−1‖ ≤ 2

α
=⇒ ‖A−1 −B−1‖ ≤ 2ε

α2

i.e., we have verified the ε− δ definition of continuity of A 7→ A−1 for A ∈ GL(n,R).

Proposition 2.6. (aij) 7→ det(aij) : M(n× n,R)→ R is continuous with respect to the norm ‖ · ‖2 on
M(n× n,R).

Proof. The determinant is simply a polynomial of degree n in its n2 variables:

a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann

Therefore, its continuity follows from the identification of (M(n × n,R), ‖ · ‖2) with (Rn2

, | · |) and the

usual continuity of polynomials on Rn2

.

2.2 The Derivative

Definition 2.7. Given p ∈ (α, β) ⊂ R, the derivative at p of a function f : (α, β)→ R is defined by:

f ′(p) = lim
h→0

f(p+ h)− f(p)

h
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Definition 2.8. Given p ∈ U ⊂ Rn, a function f : Rn → Rk is (Fréchet) differentiable at p if ∃Ap ∈
L(Rn,Rk) such that:

lim
h→0

|f(p+ h)− f(p)−Aph|
|h|

= 0

The linear map, Ap, is called the (Fréchet) derivative of f at p and denoted by Df(p).

Proposition 2.9. Given f : U → Rk, f(x) = (f1(x), . . . .fk(x)), f is differentiable at p ∈ U if and only
if for each i ∈ {1, . . . , k}, fi : U → R is differentiable at p.

Proof. Exercise.

Proposition 2.10. If f : U → Rk is differentiable at p, i.e., Df(p) exists, then f is locally Lipschitz
continuous at p.

Proof. Exercise.

Theorem 2.11. Let U ⊂ Rn and V ⊂ Rk be open, and let f : U → Rk and g : V → Rm. If f is
differentiable at p ∈ U , and g is differentiable at f(p) ∈ V , then g ◦ f is differentiable at p and:

(D(g ◦ f))(p) = (Dg(f(p))) ◦ (Df(p))

Definition 2.12. Let f : U → Rk, and let p, v ∈ Rn. The directional derivative of f at p in direction v
is defined as:

(Dvf)(p) := lim
h→0, h∈R\0

f(p+ hv)− f(p)

h
=

d

dt
f(p+ tv)

∣∣∣
t=0

if the limit exists.

Definition 2.13. Let {v1, . . . , vn} be the standard basis of Rn. Then, for i ∈ {1, . . . , n}, the ith partial
derivative of f at p = (p1, . . . , pn) is denoted by (Dif)(p) and is defined by:

(Dif)(p) := lim
h→0, h∈R\0

f(p1, . . . , pi−1, pi + h, pi+1, . . . , pn)− f(p1, . . . , pn)

h

= lim
h→0, h∈R\0

f(p+ hvi)− f(p)

h
=

d

dt
f(p+ tvi)

∣∣∣
t=0

= (Dvif)(p)

Proposition 2.14. The following algebraic rules apply to partial differentiation:

f, g : U → Rk =⇒ Di(f + g) = Dif +Dig

f : U → R and g : U → Rk =⇒ Di(fg) = (Dif)g + fDig

Proposition 2.15. If f : U → Rk is differentiable at p, then (Dvf)(p) = (Df(p))(v).

Proof. define r : R → Rn by r(t) := p + tv. We know from earlier in the course that Dr(t) = r′(t) =
v ∀ t ∈ R, i.e., (Dr(t))(h) = hv, h ∈ R. Furthermore:

by definition of r(t) and of the directional derivative, (Dvf)(p) =
d

dt
f(r(t))

∣∣∣
t=0

= (f ◦ r)′(0)

= (D(f ◦ r))(0)

= ((Df)(r(0))) ◦ (Dr(0)),by chain rule

= (Df(p))(v)

Since Df is a linear transformation from Rn to Rk, we see from the above that Dvf depends linearly on
v, i.e., Dαu+βv = αDuf + βDvf ∀α, β ∈ R, u, v ∈ Rn.
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Corollary 2.16. The Jacobian matrix representation Jf (p) of Df(p) with respect to the standard bases
v1, . . . , vn and w1, . . . , wk of Rn and Rk respectively is given by:

Jf (p) :=

(D1f1)(p) . . . (Dnf1)(p)
...

. . .
...

(D1fk)(p) . . . (Dnfk)(p)

 =


∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)
...

. . .
...

∂fk
∂x1

(p) . . . ∂fk
∂xn

(p)


where f(x) = (f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)) =

∑k
i=1 fi(x)wi.

Theorem 2.17. Given f : U → Rk, suppose that the Jacobian matrix Jf exists at all points of U and
is continuous at p ∈ U . Then f is differentiable at p.

Note: The existence of the Jacobian matrix at all points does not necessarily guarantee differentia-
bility of a function. The matrix must also be continuous.

Definition 2.18. Suppose that f : U → Rk is differentiable on U . Then f is said to be continuously
differentiable at p ∈ U if the map x 7→ Df(x) : U → L(Rn,Rk) is continuous at p.

Theorem 2.19. f : U → Rk is continuously differentiable on U if and only if Jf : U → M(k × n,R) is
continuous on U .

Proposition 2.20. The chain rule for Jacobian matrices takes the form:

Jg◦f (p) = Jgf(p) · Jf(p)

Or in terms of partial derivatives, we see that: (D1(g1 ◦ f)(p) . . . (Dn(g1 ◦ f)(p)
...

. . .
...

(D1(gm ◦ f)(p) . . . (Dn(gk ◦ f)(p)



=

 (D1g1)(f(p)) . . . (Dkg1)(f(p))
...

. . .
...

(D1gm)(f(p)) . . . (Dkgm)(f(p))


(D1f1)(p) . . . (Dnf1)(p)

...
. . .

...
(D1fk)(p) . . . (Dnfk)(p)



2.3 The Gradient

Definition 2.21. For a scalar function f : U → R, the gradient of f, denoted ∇f or gradf , is its Jacobian
matrix, which is the vector (D1f, . . . ,Dnf).

Note: For a vector function f : U → Rk, where f = (f1, . . . , fk), the Jacobian matrix is the matrix
whose rows are the gradients of each fi, i.e.:

Jf =

∇f1 . . .
...
∇fk . . .


Proposition 2.22. Suppose that f : U → R is differentiable on U and that ∃M ≥ 0 such that
|∇f(x)| ≤M ∀x ∈ U . Given p, q ∈ U , let r : [α, β]→ U be a parametrisation of a path Cpq joining p to
q, i.e., p = r(α), q = r(β). Then:

|f(q)− f(p)| ≤M length(Cpq)
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Proof.

f(q)− f(p) = f(r(β))− f(r(α))

=

ˆ β

α

d

dt
f(r(t))dt (by FTC)

=

ˆ β

α

((∇f)(r(t))) · r′(t)dt (by the Chain Rule)

so,|f(q)− f(p)| ≤
ˆ β

α

|((∇f)(r(t))) · r′(t)|dt

≤
ˆ β

α

|(∇f)(r(t))||r′(t)|dt (by Cauchy-Schwarz)

≤
ˆ β

α

M |r′(t)|dt

= M length(Cpq)

Corollary 2.23. Suppose that f : U → R is differentiable on U and that ∃M ≥ 0 such that |∇f(x)| ≤
M ∀x ∈ U . Given p, q ∈ U , suppose that Lpq ⊂ U where Lpq is the line joining p to q. Then:

|f(q)− f(p)| ≤M |q − p|

Proof. Notice that length(Lpq) = |q − p|.

Corollary 2.24. Suppose that U ⊂ Rn is path connected and that f : U → R satisfies ∇f(x) = 0∀x ∈
U . Then f is constant on U .

Proof. Pick p ∈ U . Then, by path connectedness, given q ∈ U,∃ path Cpq joining p to q. So we can
apply the earlier proposition with M = 0 to conclude that f(q) = f(p)∀ q ∈ U , i.e., f is constant on U ,
as claimed.

3 The Inverse and Implicit Function Theorems

3.1 Inverse Function Theorem

Definition 3.1. Let U, V ⊂ Rn open. A change of variables from (x1, . . . , xn) ∈ U to (y1, . . . , yn) ∈ V
is achieved by means of a function Ψ : U → V , i.e.:

y1 = Ψ1(x1, . . . , xn), . . . , yn = Ψn(x1, . . . , xn)

Note: If Ψ is a bijection, we can revert to the original variables using the inverse map Ψ−1 : V → U .

Theorem 3.2. Inverse Function Theorem: Let U be an open subset of Rn and suppose that
Ψ : U → Rn is continuously differentiable. Assume that DΨ(p) is invertible at a point p ∈ U and set
Ψ(p) := q. Then there exists Np,Nq ⊂ Rn open such that:

• p ∈ Np ⊂ U, q ∈ Nq ⊂ Ψ(U),

• Ψ : Np → Nq is a bijection,

• Ψ−1 : Nq → Np is continuously differentiable,

• (DΨ−1)(y) = (DΨ(Ψ−1(y)))−1.
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3.2 Implicit Function Theorem

Theorem 3.3. Implicit Function Theorem: Let U be an open subset of Rn+l and suppose that
F : U → Rl is continuously differentiable on U . Pick (x0, y0) ∈ U and set c := F (x0, y0). Suppose

that Fy(x0, y0) = DF (x0, y0)
∣∣∣
{0}×Rl

is invertible. Then there exists Nx0
⊂ Rn open and a function

g : Nx0
→ Rl such that:

• x0 ∈ Nx0
, g(x0) = y0, {(x, g(x)) : x ∈ Nx0

} ⊂ U ,

• F (x, g(x)) = c∀x ∈ Nx0
,

• g is continuously differentiable on Nx0
,

• Fy(x, g(x)) is invertible ∀x ∈ Nx0 ,

• Dg(x) = −(Fy(x, g(x)))−1 ◦ Fx(x, g(x))∀x ∈ Nx0 .

Definition 3.4. M ⊂ Rn+l is a submanifold (without boundary) of dimension n if, ∀ p ∈M,∃Np ⊂ Rn+l

open, U ∈ Rn and a continuously differentiable map r : U → Rn+l such that p ∈ Np, r(xp) = p for
some xp ∈ U, r : U → M ∩ Np is a bijection and rank(Dr(x)) = n∀x ∈ U . r is called a (regular)
parametrisation of M ∩Np.

Definition 3.5. The tangent space Tr(x)M of M at r(x) is the image of Dr(x), i.e., the span of
{D1r(x), . . . , Dnr(x)} shifted to r(x). More explicitly:

Tr(x)M = {r(x) + (Dr(x))h : h ∈ Rn}

Proposition 3.6. Given an open subset U of Rn+l, F : U → Rl which is continuously differentiable and
a fixed c ∈ Rl, let Γc := {z ∈ U : F (z) = c}. Suppose that rank(DF (z)) = l ∀ z ∈ Γc. Then, the level set
Γc is a submanifold (without boundary) of dimension n in Rn+l. Furthermore:

TzΓc = z + ker(DF (z)) = {z + v : (DF (z))(v) = 0}

4 Vector Analysis

4.1 Vector Fields and Line Integrals

Definition 4.1. A vector field v on U ⊂ Rn is simply a function v : U → Rn. Thus, a vector field
consists of n functions of n variables:

v(x) = (v1(x1, . . . , xn), v2(x1, . . . , xn), . . . , vn(x1, . . . , xn)), x ∈ U

Definition 4.2. Given p, q ∈ Rn, a curve Cpq which goes from p to q is the image of a path r : [α, β]→ Rn
such that r(α) = p and r(β) = q. r is then called a parameterization of Cpq.

Definition 4.3. A path r : [α, β]→ Rn is said to be continuously differentiable on [α, β] if:

• r is continuous on [a, b],

• r is continuously differentiable on (α, β),

• the two limits limt↓α r
′(t) and limt↑β r

′(t) both exist so that r′ can be viewed as a continuous
function on [α, β].

Definition 4.4. A path r : [α, β]→ Rn is called regular if r′(t) 6= 0∀ t ∈ [α, β].

Definition 4.5. The tangential line integral
´
Cpq

v ·dr of a vector field v along a curve Cpq parameterized

by r : [α, β]→ Rn for which r(α) = p and r(β) = q is defined by:

ˆ
Cpq

v · dr :=

ˆ β

α

v(r(t)) · dr
dt
dt
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Definition 4.6. If a vector field v is the gradient of a function f : U → R then v is called a gradient
field.

Theorem 4.7. FTC for a Gradient Vector Field: Given a function f : U → R and a curve Cpq ⊂ U
from p to q parameterized by r : [α, β]→ U (in particular, r(α) = p, r(β) = q) we have:

ˆ
Cpq

∇f · dr = f(q)− f(p)

Corollary 4.8. For a given function f,
´
c
∇f · dr depends only on the values of f at the endpoints of p

and q but not on the values of f along the portion of C strictly between p and q.

Corollary 4.9. ˛
C

∇f · dr = 0

for all closed curves C, since if C is closed then p = q and so f(p) = f(q).

Definition 4.10. The vector field v is conservative if:

˛
C

v · dr = 0

for all closed curves C.

Proposition 4.11. A vector field v : U → Rn is conservative if and only if ∀ p, q ∈ U,
´
Cpq

v · dr is

independent of the choice of path Cpq from p to q in U .

Theorem 4.12. A vector field v : U → Rn is a gradient field if and only if it is conservative.

Definition 4.13. If v = ∇f then f is called a scalar potential of v.

Definition 4.14. Given v = (a, b) ∈ R2, define v⊥ := (b,−a). v⊥ is v rotated clockwise by 90◦. In
particular, v · v⊥ = ab− ba = 0.

Definition 4.15. The tangent r′(t) of a regular curve C patrameterized regularly by r(t) := (x(t), y(t))
is given by r′(t) := (dxdt ,

dy
dt ) and therefore:

N(t) := r′(t)⊥ = (
dy

dt
,−dx

dt
)

is a normal to C.

Definition 4.16. The flux of a vector field v(x, y) = (p(x, y), q(x, y)) ∈ R2 across a curve C parameter-
ized by r : [α, β]→ R2 is defined to be the integral:

ˆ b

a

v(r(t)) ·N(t)dt

4.2 Integral Theorems of Vector Calculus

Definition 4.17. A region in Rn is a subset Ω of Rn for which there exists a function f : Rn → R with
the following properties:

• All partial derivatives of f are continuous,

• Ω = {x ∈ Rn : f(x) < 0},

• ∇f(x) 6= 0∀x ∈ ∂Ω where ∂Ω := {x ∈ Rn : f(x) = 0} is the boundary of Ω.

f is called a defining function of the set Ω.

Note: We define Ω = Ω ∪ ∂Ω = {x ∈ Rn : f(x) ≤ 0}.
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Definition 4.18. The curl of a planar vector field v = (x, y) 7→ (a(x, y), b(x, y)) : U → R2 is defined to
be the function ∂b

∂x −
∂a
∂y and it is denoted by curlv.

Definition 4.19. Let n+(p) = (a(p), b(p)) be the outward unit normal to the region Ω ⊂ R2 at the point
p ∈ ∂Ω. The positively oriented unit tangent vector t+(p) at p is then the vector (−b(p), a(p)), which is
n+(p) rotated anticlockwise by 90◦. Thus, t+ = −(n+(p))⊥.

Definition 4.20. Let Ω ⊂ R2 be a region. A regular parameterization r : [a, b]→ R2 of ∂Ω is positively

oriented if t+ := r′

|r′| is a positively oriented unit tangent vector to ∂Ω at r(t).

Theorem 4.21. Green’s Theorem: Let Ω ⊂ R2 be a region and let v : U → R2 be a planar vector
field on U , which contains Ω. Then:¨

Ω

curlv(x, y)dAx,y =

‰
∂Ω

v · t+ds =

‰
∂Ω

v · dr

where s is the arclength parameter along ∂Ω, r is a positively oriented parametrisation of ∂Ω and the
element of area dAx,y in the plane is often written as just dxdy.

Definition 4.22. The divergence of a vector field v(x) = (v1(x1, . . . , xn), . . . , vn(x1, . . . , xn)) is denoted
by both divv and ∇ · v and it is defined by:

∇ · v :=
∂v1

∂x1
+ . . .+

∂vn
∂xn

Thus, ∇ · v is a function.

Theorem 4.23. Gauss’ Theorem/Divergence Theorem: Let Ω ⊂ R2 be a region and let v : U → R2

be a planar vector field on U , which contains Ω. Then:¨
Ω

∇ · v(x, y)dAx,y =

ˆ
∂Ω

v · n+ds

where n+ is the unit outward normal to Ω.

Definition 4.24. The flux of a vector field v(x, y) ∈ R3 across a surface C parametrised by r(u, v) =
(x(u, v), y(u, v), z(u, v)) : U → R3 is defined to be the integral:¨

S

v · n+dA

where n+ is a unit normal to S and dA is the element of area on S. With respect to parametrisation r,
we have:

n+(u, v) :=
∂r
∂u ×

∂r
∂v

| ∂r∂u ×
∂r
∂v |

, dA := | ∂r
∂u
× ∂r

∂v
|dudv

and therefore:

Flux of v across S =

¨
U

v(r(u, v)) · ( ∂r
∂u
× ∂r

∂v
)dudv

Note: Other notation for flux may include:¨
S

v · n+dA =

¨
S

v · dA =

¨
S

v · n+dS =

¨
S

v · dS

Theorem 4.25. Divergence Theorem in R3: Let Ω ⊂ R3 be a region and let v : U → R3 be a vector
field on U , which contains Ω. Then:˚

Ω

∇ · v(x, y, z)dVx,y,z =

¨
∂Ω

v · n+dA

where n+ is the unit outward normal to Ω, dVx,y,z is the volume element of Ω (often written as dxdydz)
and, if v(x, y, z) = (v1(x, y, z), v2(x, y, z), v3(x, y, z)), then:

∇ · v(x, y, z) :=
∂v1

∂x
(x, y, z) +

∂v2

∂y
(x, y, z) +

∂v3

∂z
(x, y, z)
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Definition 4.26. A vector field is said to be incompressible if it has zero divergence everywhere.

Definition 4.27.

∆f := ∇ · (∇f) =

n∑
i=1

∂2f

∂x2
i

Where if f is incompressible and irrotational (has no circulation), then ∆f = 0.

Proposition 4.28. Suppose f : U → R is continuously differentiable. Then, identifying L(Rn,R) with
Rn, we can view Df as ∇f , the map x 7→ (D1f(x), . . . , Dnf(x)) : U → Rn.Df : U → Rn is differentiable
at p ∈ U if ∃Hp ∈ L(Rn) such that:

limh→0
|Df(p+ h)−Df(p)−Hph|

|h|
= 0

where Hp = D2f(p), the Hessian of f , i.e.:

D2f(p) is the linear maph 7→

(D11f(p) . . . Dn1f(p)
...

. . .
...

(D1nf(p) . . . Dnnf(p)


h1

...
hn

 ∈ Rn

Definition 4.29. Ck spaces are defined as follows:

• C0(U,Rm) = {f : U → Rm : f is continuous}.

• Ck(U,Rm) = {f : U → Rm : all derivatives of f up to, and including, order k exist and are continuous on U}.

• Ck(U,R) is abbreviated to just Ck(U).

4.3 Laplacian and Harmonic functions

Definition 4.30. The Laplacian is the second order partial differential operator defined as:

∆ :=
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

Definition 4.31. Laplace’s Equation is ∆f = 0 and its solutions are called harmonic functions.

Definition 4.32. A function f : Rn \ {0} → R is called radial if ∃φ : R>0 → R such that f(x) =
φ(|x|)∀x ∈ Rn \ {0}

Proposition 4.33. If f is radial and x 6= 0 then, by the chain rule and assuming φ ∈ C1(R>0):

∇f(x) = φ′(|x|)∇(|x|) = φ′(|x|) x
|x|

Proof. Obvious from the fact that ∂
∂xi

(x2
1 + . . .+ x2

n)1/2 = 2xi

2(x2
1+...+x2

n)1/2
.

Proposition 4.34. If f ∈ C2(U) is harmonic, and Ω ⊂ U , then
˜
∂Ω
∇f · n+dA = 0.

Proof. If f is harmonic, then ∇ · (∇f) = ∆f = 0, so by Divergence Theorem:

0 =

˚
Ω

∇ · (∇f)dV =

¨
∂Ω

∇f · n+dA

Definition 4.35. • The integral average of an integrable function f : (a, b) → R is denoted byffl b
a
f(x)dx and is defined by:  b

a

f(x)dx :=
1

b− a

ˆ b

a

f(x)dx
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• Similarly, if we have E ⊂ R2 and f : E → R integrable, then:  
E

f(x)dA :=
1

Area(E)

¨
E

f(x)dA

• Again, if we have E ⊂ R3 and f : E → R integrable, then:   
E

f(x)dV :=
1

Vol(E)

˚
E

f(x)dV

Definition 4.36. The diameter of E ⊂ Rn is denoted by diam(E) and is defined as:

diam(E) := sup{‖x− y‖ : x, y ∈ E}

Proposition 4.37. If f is continuous at x then f(x) = limE→(x)

ffl
E
f .

5 Second Order Derivatives

5.1 Second Derivatives

Definition 5.1. Let f ∈ C1(U). Suppose further that ∇f is differentiable at p ∈ U , i.e., ∃ Hp ∈ L(Rn)
such that:

lim
h→0

|∇f(p+ h)−∇f(p)−Hph|
|h|

= 0.

Hp, if it exists, is written as D2f(p). If the above limit holds, then the second order partial derivatives
d2f

dxidxj
(p) exist at p and the matrix representation of D2f(p) with respect to the standard basis on Rn

is called the Hessian of f at p, denoted by Hessf(p) and is given by:

Hessf(p) =


d2f
dx2

1
(p) . . . d2f

dxndx1
(p)

...
...

d2f
dx1dxn

(p) . . . d2f
dx2

n
(p)


Proposition 5.2. If f ∈ C1(U), U ⊂ Rn and D2f(p) exists, p ∈ U , then:

d2f

dxidxj
(p) =

d2f

dxjdxi
(p) ∀ i, j ∈ {1, . . . , n}

i.e. Hessf(p) is a symmetric matrix.

Corollary 5.3. If all second order partial derivatives of f at p are continuous, then they also commute
at p, because it implies D2f(p) exists.

5.2 Second Order Taylor Expansion

Theorem 5.4. The 1-Variable Case: Suppose that f ∈ C2(−η, η) for some η > 0. Then:

for x ∈ (−η, η), f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +R(x) where lim

x→0

|R(x)|
x2

= 0

Proof. Set f ′(0) := b, f ′′(0) := c and ρ(s) := f ′′(s)− f ′′(0) = f ′′(s)− c. Then:

f ′(t) = f ′(0) +

ˆ t

0

f ′′(s) ds

= b+

ˆ t

0

(
c+ (f ′′(s)− c)

)
ds

= b+ ct+

ˆ t

0

ρ(s) ds
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Therefore:

f(x) = f(0) +

ˆ x

0

f ′(t) dt

= f(0) +

ˆ x

0

(
b+ ct+

ˆ t

0

ρ(s) ds
)
dt

= f(0) + bx+
1

2
cx2 +

ˆ x

0

ˆ t

0

ρ(s) ds dt

= f(0) + xf ′(0) +
1

2
x2f ′′(0) +R(x)

where R(x) :=

ˆ x

0

ˆ t

0

ρ(s) ds dt. By continuity of f ′′ at 0, ∀ ε > 0 ∃ δ > 0 such that |s| < δ =⇒

|ρ(s)| < ε. Therefore:

|x| < δ =⇒ |R(x)| ≤
ˆ x

0

ˆ t

0

|ρ(s)| ds dt ≤
ˆ x

0

ˆ t

0

ε ds dt =
1

2
εx2,

i.e., 0 < |x| < δ =⇒ |R(x)|
x2

≤ 1
2ε, i.e., lim

x→0

|R(x)|
x2

= 0, as claimed.

Theorem 5.5. Second Order Taylor Expansion: Suppose U ⊂ Rn is convex and 0 ∈ U . If
f ∈ C2(U) then:

f(x) = f(0) +

n∑
i=1

xi
∂f

∂xi
(0) +

1

2

n∑
i,j=1

xixj
∂2f

∂xi∂xj
(0) +R(x) where lim

x→0

|R(x)|
|x|2

= 0.

Note:
∑n
i=1 xi

∂f
∂xi

(0) is often written as x · ∇f(0) and
∑n
i,j=1 xixj

∂2f
∂xi∂xj

(0) is often written as:

xTD2f(0)x =
(
x1 . . . xn

)
∂2f
∂x2

1
(0) . . . ∂2f

∂xn∂x1
(0)

...
...

∂2f
∂x1∂xn

(0) . . . ∂2f
∂x2

n
(0)


x1

...
xn



Proof. If x = 0, there is nothing to prove. If x ∈ U \{0} then, since U is convex and 0 ∈ U, t x|x| ∈ U ∀ t ∈
[0, |x|]. Therefore, we may define g : [0, |x|]→ R by g(t) := f(t x|x| ). Then, since t x|x| = (t x1

|x| , . . . , t
xn

|x| ), we

have, by the Chain Rule:

g′(t) =

n∑
i=1

xi
|x|

df

dxi
(t
x

|x|
) and g′′(t) =

n∑
i,j=1

xi
|x|

xj
|x|

d2f

dxjdxi
(t
x

|x|
)

Since U is open we can, in fact, define g on an open interval that contains [0, |x|] and we can apply the
1-variable case of the second order Taylor expansion to g to get:

g(|x|) = g(0) + |x|g′(0) + 1
2 |x|

2g′′(0) +R(|x|)

i.e.:

f(x) = f(0) + x · ∇f(0) +
1

2
xTHessf(0)x+R(|x|)

where lim
x→0

|R(x)|
|x|2

= 0.
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5.3 Critical Points

Definition 5.6. p ∈ U is called a critical point of f ∈ C1(U) if ∇f(p) = 0.

Proposition 5.7. If f has a local maximum or minimum at p, then ∇f(p) = 0.

Proof. Suppose f has a local maximum/minimum at p. Given v ∈ Rn, define g(t) := f(p+ tv) for t ∈ R
small enough so that p+ tv ∈ U . Then g has a local maximum/minimum at 0 and therefore, g′(0) = 0.
But g′(0) = (∇f(p)) · v and we have shown that (∇f(p)) · v = 0, ∀ v ∈ Rn. Taking v = ∇f(p) shows
that ∇f(p) = 0, as claimed.

Definition 5.8. A symmetric matrix P is

• positive definite if xTPx = x · Px > 0 ∀x ∈ Rn \ {0}.

• positive semidefinite if xTPx ≥ 0 ∀x ∈ Rn.

• negative definite if xTPx < 0 ∀x ∈ Rn \ {0}.

• negative semidefinite if xTPx ≤ 0 ∀x ∈ Rn.

• indefinite if xTPx is neither positive semidefinite nor negative semidefinite, i.e., ∃ x, y ∈ Rn such
that xTPx > 0 and yTPy < 0.

Theorem 5.9. Every symmetric matrix can be diagonalised by an orthogonal matrix, i.e., if λ1, . . . , λn
are the real eigenvalues of a symmetric matrix P then there exists an orthogonal matrix O such that:

OTPO =


λ1 0

. . .

0 λn

 =: diag(λ1, . . . , λn)

Proposition 5.10. Arrange the eigenvalues of P in increasing order, i.e., λ1 ≤ · · · ≤ λn. Then:

λn|x|2 ≥ x · Px ≥ λ1|x|2 ∀x ∈ Rn

Proof. Let {e1, . . . , en} be an orthonormal basis of Rn consisting of eigenvectors of P , i.e., Pei = λiei;
ei is just the ith column of O. Given x ∈ Rn, let ai := x · ei. Then x =

∑n
i=1 aiei and |x|2 =

∑n
i=1(ai)

2.
It follows that:

x · Px =

n∑
i=1

(ai)
2λi ≥ λ1

n∑
i=1

(ai)
2 = λ1|x|2 and similarly, x · Px =

n∑
i=1

(ai)
2λi ≤ λn|x|2

Theorem 5.11. Second Order Derivative Test: Suppose that f ∈ C2(U) and that ∇f(p) = 0 for
some p ∈ U :

• If Hessf(p) is positive definite then f has a strict local minimum at p.

• If Hessf(p) is negative definite then f has a strict local maximum at p.

• If Hessf(p) is indefinite then f has neither a local minimum nor a local maximum at p and p is
called a saddle point.

• If Hessf(p) is positive or negative semidefinite then the test is inconclusive, i.e., f may have a
minimum at p, or a maximum or a saddle point.

Test for 2× 2 Symmetric Matrices: A 2× 2 symmetric matrix: P =
(
a b
b c

)
is

• positive definite if detP = ac− b2 > 0 and a > 0 or c > 0,

• negative definite if detP > 0 and a < 0 or c < 0,

• indefinite if detP < 0,

• semidefinite if detP = 0.
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