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Introduction

This revision guide for MA251 Algebra I: Advanced Linear Algebra has been designed as an aid
to revision, not a substitute for it. While it may seem that the module is impenetrably hard, there’s
nothing in Algebra I to be scared of. The underlying theme is normal forms for matrices, and so while
there is some theory you have to learn, most of the module is about doing computations. (After all, this
is mathematics, not philosophy.)

Finding books for this module is hard. My personal favourite book on linear algebra is sadly out-of-
print and bizarrely not in the library, but if you can find a copy of Evar Nering’s “Linear Algebra and
Matrix Theory” then it’s well worth it (though it doesn’t cover the abelian groups section of the course).
Three classic seminal books that cover pretty much all first- and second-year algebra are Michael Artin’s
“Algebra”, P. M. Cohn’s “Classic Algebra” and I. N. Herstein’s “Topics in Algebra”, but all of them focus
on the theory and not on the computation, and they often take a different order (for instance, most do
modules before doing JCFs). Your best source of computation questions is old past paper questions, not
only for the present module but also for its predecessors MA242 Algebra I and MA245 Algebra II.
So practise, practise, PRACTISE, and good luck on the exam!

Disclaimer: Use at your own risk. No guarantee is made that this revision guide is accurate or
complete, or that it will improve your exam performance, or that it will make you 20% cooler. Use of
this guide will increase entropy, contributing to the heat death of the universe.

Authors

Written by D. S. McCormick (d.s.mccormick@warwick.ac.uk). Edited by C. I. Midgley (c.i.midgley@warwick.ac.uk)
Based upon lectures given by Dr. Derek Holt and Dr. Dmitrĭı Rumynin at the University of Warwick,
2006–2008, and later Dr. David Loeffler, 2011–2012.
Any corrections or improvements should be entered into our feedback form at http://tinyurl.com/WMSGuides
(alternatively email revision.guides@warwickmaths.org).
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1 Change of Basis

A major theme in MA106 Linear Algebra is change of bases. Since this is fundamental to what
follows, we recall some notation and the key theorem here.

Let T : U → V be a linear map between U and V . To express T as a matrix requires picking a basis
{ei} of U and a basis {fj} of V . To change between two bases {ei} and {e′i} of U , we simply take the
identity map IU : U → U and use the basis {e′i} in the domain and the basis {ei} in the codomain; the
matrix so formed is the change of basis matrix from the basis of eis to the e′is. Any such change of
basis matrix is invertible — note that this version is the inverse of the one learnt in MA106 Linear
Algebra!

Proposition 1.1. Let u ∈ U , and let u and u′ denote the column vectors associated with u in the bases
e1, . . . , en and e′1, . . . , e

′
n respectively. Then if P is the change of basis matrix, we have Pu′ = u.

Theorem 1.2. Let A be the matrix of T : U → V with respect to the bases {ei} of U and {fj} of V , and
let B be the matrix of T with respect to the bases {e′i} of U and {f ′j} of V . Let P be the change of basis

matrix from {ei} to {e′i}, and let Q be the change of basis matrix from {fj} to {f ′j}. Then B = Q−1AP .

Throughout this course we are concerned primarily with U = V , and {ei} = {fj}, {e′i} = {f ′j}, so

that P = Q and hence B = P−1AP .
In this course, the aim is to find so-called normal forms for matrices and their corresponding linear

maps. Given a matrix, we want to know what it does in simple terms, and to be able to compare matrices
that look completely different; so, how should we change bases to get the matrix into a nice form? There
are three very different answers:

1. When working in a finite-dimensional vector space over C, we can always change bases so that T
is as close to diagonal as possible, with only eigenvalues on the diagonal and possibly some 1s on
the superdiagonal; this is the Jordan Canonical Form, discussed in section 2.

2. We may want the change of basis not just to get a matrix into a nice form, but also preserve its
geometric properties. This leads to the study of bilinear and quadratic forms, and along with it
the theory of orthogonal matrices, in section 3.

3. Alternatively, we may consider matrices with entries in Z, and try and diagonalise them; this leads,
perhaps surprisingly, to a classification of all finitely-generated abelian groups, which (along with
some basic group theory) is the subject of section 4.

2 The Jordan Canonical Form

2.1 Eigenvalues and Eigenvectors

We first recall some facts on eigenvalues and eigenvectors from MA106 Linear Algebra.

Definition 2.1. Let V be a vector space over K and let T : V → V be a linear map, with associated
matrix A. If T (v) = λv for some λ ∈ K and v ∈ V with v 6= 0, then λ is an eigenvalue of T (and of
A), and v a corresponding eigenvector of T (and of A). We call the subspace {v ∈ V | T (v) = λv} the
eigenspace of T with respect to λ.

Definition 2.2. For an n× n matrix A, cA(x) := det(A− xIn) is the characteristic polynomial of A.

Theorem 2.3. Let A be an n×n matrix. Then λ is an eigenvalue of A if and only if det(A− λIn) = 0.

Recall that n × n matrices A and B are similar if there is an invertible n × n matrix P such that
B = P−1AP . Since similar matrices have the same characteristic equation, changing bases does not
change the eigenvalues of a linear map.

You have already seen one “normal form”, which occurs when the matrix has distinct eigenvalues:

Theorem 2.4. Let T : V → V be a linear map. Then the matrix of T is diagonal with respect to some
basis of V if and only if V has a basis consisting of eigenvectors of T .
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Theorem 2.5. Let λ1, . . . , λr be distinct eigenvalues of a linear map T : V → V and let v1, . . . ,vr be
the corresponding eigenvectors. Then v1, . . . ,vr are linearly independent.

Corollary 2.6. If the linear map T : V → V has n distinct eigenvalues, where dimV = n, then T is
diagonalisable.

Of course, the converse is not true; T may be diagonalisable even though it has repeated eigenvalues.

2.2 Minimal Polynomials

We denote the set of all polynomials in a single variable x with coefficients in a field K by K[x]. We
recall some properties of polynomials from MA132 Foundations; these often resemble properties of Z.

We write a | b to mean a divides b; e.g. (x − 4) | (x2 − 3x − 4). Given two polynomials p, q 6= 0, we
can divide with remainder, where the remainder has degree less than p. For example, if p = x2 − 4x and
q = x3 + 2x2 + 5, then q = sp+ r, where s = x+ 6 and r = 24x+ 5. This is the Euclidean algorithm.

Definition 2.7. A polynomial in K[x] is called monic if the coefficient of the highest power of x is 1.

Definition 2.8. The greatest common divisor of p, q ∈ K[x] is the unique monic polynomial r such that
r | p and r | q, and for any other polynomial r′ such that r′ | p and r′ | q, we have r′ | r. Similarly, the
lowest common multiple of p, q ∈ K[x] is the unique monic polynomial r such that p | r and q | r, and
for any other polynomial r′ such that p | r′ and q | r′, we have r | r′.

We first observe a very interesting fact about characteristic polynomials:

Theorem 2.9 (Cayley–Hamilton Theorem). Let cA(x) be the characteristic polynomial of an n × n
matrix A over an arbitrary field K. Then cA(A) = 0.

So we know that there is at least some polynomial p ∈ K[x] such that p(A) = 0. The following
theorem allows us to define more:

Theorem 2.10. Let A be an n× n matrix over K representing the linear map T : V → V . Then there
is a unique monic non-zero polynomial p ∈ K[x] with minimal degree such that p(A) = 0. Furthermore,
if q ∈ K[x] also satisfies q(A) = 0, then p | q.

Proof. We can assume such a polynomial is monic. The Cayley–Hamilton Theorem tells us that there
is p ∈ K[x] such that p(A) = 0. If there were two distinct polynomials p1, p2 of minimal degree
s.t. p1(A) = p2(A) = 0, then p = p1−p2 would be non-zero and of lower degree, contradicting minimality.
Thus p is unique. Furthermore, suppose q(A) = 0 but p - q. Then we can write q = sp + r, with
deg(r) < deg(p), and r 6= 0. But then r(A) = q(A)− s(A)p(A) = 0, contradicting minimality of p.

Definition 2.11. The unique monic non-zero polynomial µA(x) of minimal degree with µA(A) = 0 is
called the minimal polynomial of A, or of the corresponding linear map T .

Combining the last two theorems we observe that µA(x) divides cA(x). Furthermore, similar matrices
have the same minimal polynomial, so the minimal polynomial of a linear map does not depend on bases.

Similarly to above we may define µAv to be the unique monic polynomial p of minimal degree such
that p(T )(v) = 0; since p(T ) = 0 if and only if p(T )(v) = 0 for all v ∈ V , µA is the least common
multiple of µAv for v ∈ V . In fact, we only need consider vectors in a basis of V ; i.e. if {e1, . . . , en} is
a basis of V then µA = lcm{µAei : 1 ≤ i ≤ n}. This allows us to calculate µA: for v ∈ V , we compute
µAv by calculating v, T (v), T 2(v), and so on until the sequence becomes linearly dependent.

Example 2.12. Let K = R and consider A =
(

5 0 −1
3 4 −3
1 0 3

)
. Let e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 =

(0, 0, 1)T be the standard basis of R3. Then:
• Ae1 = (5, 3, 1)T, A2e1 = (24, 24, 8)T = 8Ae1 − 16e1, so (A2 − 8A + 16)e1 = 0, thus µAe1

(x) =
x2 − 8x+ 16 = (x− 4)2.

• Ae2 = (0, 4, 0)T = 4e2, so (A− 4)e2 = 0, thus µAe2(x) = (x− 4).
• Ae3 = (−1,−3, 3)T, A2e3 = (−8,−24, 8)T = 8Ae3− 16e3, thus µAe3(x) = x2− 8x+ 16 = (x− 4)2.

Thus µA = lcm{µAe1
, µAe2

, µAe3
} = (x− 4)2. One may compute that cA(x) = det(A− xI) = (4− x)3.
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Lemma 2.13. (x− λ) divides the minimal polynomial µA(x) if and only if λ is an eigenvalue of A.

Proof. Suppose (x − λ) | µA(x); then as µA(x) | cA(x), we have (x − λ) | cA(x), and hence λ is an
eigenvalue of A. Conversely, if λ is an eigenvalue of A then there exists v 6= 0 such that (A− λI)v = 0,
hence µAv = (x− λ), and since µA = lcm{µAv : v ∈ V } we have (x− λ) | µA(x).

2.3 Jordan Chains, Jordan Blocks and Jordan Bases

We assume henceforth that K = C, so that all polynomials in K[x] factorise into linear factors (by the
Fundamental Theorem of Algebra). We now seek to generalise our notions of eigenvalue and eigenvector
in order to be able to find a “normal form” for a matrix with any eigenvalues, not just distinct ones.

Definition 2.14. A Jordan chain of length k is a sequence of non-zero vectors v1, . . . ,vk ∈ Cn,1 (that
is, column vectors of length n with entries in C) that satisfies

Av1 = λv1 and Avi = λvi + vi−1 for 2 ≤ i ≤ k

for some eigenvalue λ of A. Equivalently, (A − λIn)v1 = 0 and (A − λIn)vi = vi−1 for 2 ≤ i ≤ k, so
(A− λIn)ivi = 0 for 1 ≤ i ≤ k.

Definition 2.15. A non-zero vector v ∈ V such that (A − λIn)iv = 0 for some i > 0 is called a
generalised eigenvector of A with respect to the eigenvalue λ. The set {v ∈ V |(A−λIn)iv = 0} is called
the generalised eigenspace of index i of A with respect to λ; it is the nullspace of (A− λIn)i. (Note that
when i = 1, these definitions reduce to ordinary eigenvectors and eigenspaces.)

For example, consider the matrix A =
(

3 1 0
0 3 1
0 0 3

)
. For the standard basis e1, e2, e3 of C3,1, we have

Ae1 = 3e1, Ae2 = 3e2 + e1, Ae3 = 3e3 + e2. Thus e1, e2, e3 is a Jordan chain of length 3 for the
eigenvalue 3 of A. The generalised eigenspaces of index 1, 2 and 3 respectively are 〈e1〉, 〈e1, e2〉, and
〈e1, e2, e3〉.

Note that the dimension of a generalised eigenspace of A is the nullity of (T − λIV )i, which depends
only on the linear map T associated with A; thus the dimensions of corresponding eigenspaces of similar
matrices are the same.

Definition 2.16. A Jordan block with eigenvalue λ of degree k is the k × k matrix Jλ,k = (γij) where
γii = λ for 1 ≤ i ≤ k, γi,i+1 = 1 for 1 ≤ i < k, and γij = 0 if j 6= i, i+ 1.

For example, the following are Jordan blocks:

J2,2 =

(
2 1
0 2

)
, J(2−i),3 =

2− i 1 0
0 2− i 1
0 0 2− i

 .

It is a fact that the matrix A of T with respect to the basis v1, . . . ,vn of Cn,1 is a Jordan block of degree
n if and only if v1, . . . ,vn is a Jordan chain for A.

Note that the minimal polynomial of Jλ,k is µJλ,k(x) = (x− λ)k, and its characteristic polynomial is

cJλ,k(x) = (λ− x)k.

Definition 2.17. A Jordan basis for A is a basis of Cn,1 which is a union of disjoint Jordan chains.

For an m × m matrix A and an n × n matrix B, we can form the (m + n) × (m + n) matrix

A⊕B =

(
A 0m,n

0n,m B

)
. For example,

(
1 2
0 1

)
⊕
(

2 3
4 −1

)
=


1 2 0 0
0 1 0 0
0 0 2 3
0 0 4 −1

 .

Suppose A has eigenvalues λ1, . . . , λr, and suppose wi,1, . . . ,wi,ki is a Jordan chain for A for the
eigenvalue λi, such that w1,1, . . . ,w1,k1 ,w2,1, . . . ,w2,k2 , . . . ,wr,1, . . . ,wr,kr is a Jordan basis for A. Then
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the matrix of the linear map T corresponding to A with respect to this Jordan basis is the direct sum of
Jordan blocks Jλ1,k1 ⊕ Jλ2,k2 ⊕ · · · ⊕ Jλr,kr .

The main theorem of this section is that we can always find a Jordan matrix for any n × n matrix
A over C; the corresponding matrix which is a direct sum of the Jordan blocks is called the Jordan
canonical form of A:

Theorem 2.18. Let A be an n × n matrix over C. Then there exists a Jordan basis for A, and hence
A is similar to a matrix J which is a direct sum of Jordan blocks. The Jordan blocks occurring in J are
uniquely determined by A, so J is uniquely determined up to the order of the blocks. J is said to be the
Jordan canonical form of A.

The proof of this theorem is hard and non-examinable. What’s far more important is calculating
the Jordan canonical form (JCF) of a matrix, and the matrix P whose columns are the vectors of the
Jordan basis; then by theorem 1.2, we have that P−1AP = J . For 2×2 and 3×3 matrices, the JCF of a
matrix is in fact determined solely by its minimal and characteristic polynomials. In higher dimensions,
we must consider the generalised eigenspaces.

2.4 Computing the Jordan Canonical Form

Suppose A is an n×n matrix with eigenvalues λ1, . . . , λr, and that the Jordan blocks for eigenvalue λi are
Jλi,ki,1 , . . . , Jλi,ki,ji , where ki,1 ≥ ki,2 ≥ · · · ≥ ki,ji . Then the characteristic polynomial of J (and hence

of A) is the product of the characteristic polynomials of the Jordan blocks; thus cJ(x) =
∏r
i=1(λi−x)ki ,

where ki = ki,1 + · · · + ki,ji ; i.e. each (λi − x) occurs raised to the power of the sum of the sizes of the
Jordan blocks of that eigenvalue.

The minimal polynomial of J (hence of A) is the least common multiple of the minimal polynomials
of the Jordan blocks; since we have arranged them in descending order of size, µJ(x) =

∏r
i=1(x−λi)ki,1 ;

i.e. each (x− λi) occurs raised to the power of the biggest Jordan block for that eigenvalue.
In 2 and 3 dimensions, this restricts the possible Jordan blocks enough to determine the JCF solely

by looking at the minimal and characteristic polynomials. We must then determine the Jordan basis;
note that it is often easier to find the vectors in a Jordan chain in reverse order.

2.4.1 2× 2 Matrices

For a 2 × 2 matrix, there are two possibilities for its characteristic polynomial; it must either have two
distinct roots, e.g. (λ1 − x)(λ2 − x), or it must have one repeated root, (λ1 − x)2. By lemma 2.13, in
the first case the minimal polynomial must be (x − λ1)(x − λ2), and the only possibility is one Jordan
block for each eigenvalue of size 1. (This accords with corollary 2.6.) In the second case, we can have
µA(x) = (λ1 − x) or µA(x) = (λ1 − x)2, which correspond to two Jordan blocks of size 1 and one
Jordan block of size 2 for the only eigenvalue. (In fact, when we have two Jordan blocks of size 1 for
the same eigenvalue, the JCF is just a scalar matrix J =

(
λ 0
0 λ

)
which commutes with all matrices, thus

A = PJP−1 = J , i.e. A is its own JCF.) Table 1 summarises the possibilities.

Characteristic Polynomial Minimal Polynomial Jordan Canonical Form

(λ1 − x)(λ2 − x) (x− λ1)(x− λ2) Jλ1,1 ⊕ Jλ2,1 =
(
λ1 0
0 λ2

)
(λ1 − x)2

(x− λ1)2 Jλ1,2 =
(
λ1 1
0 λ1

)
(x− λ1) Jλ1,1 ⊕ Jλ1,1 =

(
λ1 0
0 λ1

)
Table 1: The possible JCFs of a 2× 2 matrix.

Example 2.19. A = ( 2 4
5 3 ) has characteristic polynomial cA(x) = (x + 2)(x − 7), so A has eigenvalues

−2 and 7, and thus the JCF is J =
(−2 0

0 7

)
. An eigenvector for the eigenvalue −2 is (1,−1)T , and an

eigenvector for the eigenvalue 7 is (4, 5)T ; setting P =
(

1 4
−1 5

)
, we may calculate that P−1AP = J .

Example 2.20. A =
(

2 1
−1 4

)
has cA(x) = (3 − x)2, and one may calculate µA(x) = (x − 3)2. Thus its

JCF is J = ( 3 1
0 3 ). To find a Jordan basis we choose any v2 such that (A− 3I)v2 6= 0, and then choose
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v1 = (A− 3I)v2; for example v2 = (0, 1)T has (A− 3I)v2 = (1, 1)T, so set v1 = (1, 1)T; then Av1 = 3v1

and Av2 = 3v2 + v1 as required. Thus setting P = ( 1 0
1 1 ), we may calculate that P−1AP = J .

2.4.2 3× 3 Matrices

For 3× 3 matrices, we can do the same kind of case analysis that we did for 2× 2 matrices. It is a very
good test of understanding to go through and derive all the possibilities for yourself, so DO IT NOW!
Once you have done so, turn to the next page and check the results in table 2.

Characteristic Polynomial Minimal Polynomial Jordan Canonical Form

(λ1 − x)(λ2 − x)(λ3 − x) (x− λ1)(x− λ2)(x− λ3) Jλ1,1 ⊕ Jλ2,1 ⊕ Jλ3,1 =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
(λ1 − x)2(λ2 − x)

(x− λ1)2(x− λ2) Jλ1,2 ⊕ Jλ2,1 =

(
λ1 1 0
0 λ1 0
0 0 λ2

)
(x− λ1)(x− λ2) Jλ1,1 ⊕ Jλ1,1 ⊕ Jλ2,1 =

(
λ1 0 0
0 λ1 0
0 0 λ2

)

(λ1 − x)3
(x− λ1)3 Jλ1,3 =

(
λ1 1 0
0 λ1 1
0 0 λ1

)
(x− λ1)2 Jλ1,2 ⊕ Jλ1,1 =

(
λ1 1 0
0 λ1 0
0 0 λ1

)
(x− λ1) Jλ1,1 ⊕ Jλ1,1 ⊕ Jλ1,1 =

(
λ1 0 0
0 λ1 0
0 0 λ1

)
Table 2: The possible JCFs of a 3× 3 matrix.

Example 2.21. Consider A =
(

5 0 −1
3 4 −3
1 0 3

)
. We previously calculated cA(x) = (4− x)3, µA(x) = (x− 4)2.

This tells us that the JCF of A is J =
(

4 1 0
0 4 0
0 0 4

)
. There are two Jordan chains, one of length 2 and one

of length 1. For the first we need v1,v2 such that (A− 4I)v2 = v1, and (A− 4I)v1 = 0. We calculate

A−4I =
(

1 0 −1
3 0 −3
1 0 −1

)
. The minimal polynomial tells us that (A−4I)2v = 0 for all v ∈ V , so we can choose

whatever we like for v2; say v2 = (1, 0, 0)T; then v1 = (A− 4I)v2 = (1, 3, 1)T. For the second chain we
need an eigenvector v3 which is linearly independent of v1; v3 = (1, 0, 1)T is as good as any. Setting

P =
(

1 1 1
3 0 0
1 0 1

)
we find J = P−1AP .

Example 2.22. Consider A =
(

4 −1 −1
−4 9 4
7 −10 −4

)
. One may tediously compute that cA(x) = (3 − x)3, and

that

A− 3I =

 1 −1 −1
−4 6 4
7 −10 −7

 , (A− 3I)2 =

−2 3 2
0 0 0
−2 3 2

 , (A− 3I)3 = 0.

Thus µA(x) = (x − 3)3. Thus we have one Jordan chain of length 3; that is, we need nonzero vectors
v1,v2,v3 such that (A− 3I)v3 = v2, (A− 3I)v2 = v1, and (A− 3I)v1 = 0. For v3, we need (A− 3I)v3

and (A − 3I)2v3 to be nonzero; we may choose v3 = (1, 1, 0)T; we can then compute v2 = (0, 2,−3)T

and v1 = (1, 0, 1)T. Putting P =
(

1 0 1
0 2 1
1 −3 0

)
, we obtain P−1AP =

(
3 1 0
0 3 1
0 0 3

)
.

2.4.3 Higher Dimensions: The General Case

For dimensions higher than 3, the characteristic polynomial and minimal polynomial do not always
determine the JCF uniquely. In 4 dimensions, for example, Jλ,2 ⊕ Jλ,2 and Jλ,2 ⊕ Jλ,1 ⊕ Jλ,1 both have
cA(x) = (λ−x)4 and µA(x) = (x−λ)2. In general, we can compute the JCF from the dimensions of the
generalised eigenspaces, as follows:

Theorem 2.23. Let λ be an eigenvalue of A and let J be the JCF of A. Then:
(i) The number of Jordan blocks of J with eigenvalue λ is equal to nullity(A− λIn).
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(ii) More generally, for i > 0, the number of Jordan blocks of J with eigenvalue λ and degree at least
i is equal to nullity((A− λIn)i)− nullity((A− λIn)i−1).

(Recall that nullity(T ) = dim(ker(T )).) The proof of this need not be learnt, but the theorem is vital
as a tool for calculating JCFs, as the following example shows.

Example 2.24. Let A =

( 1 0 −1 1 0
−4 1 −3 2 1
−2 −1 0 1 1
−3 −1 −3 4 1
−8 −2 −7 5 4

)
. One may tediously compute that cA(x) = (2 − x)5, and

that

A− 2I =

(−1 0 −1 1 0
−4 −1 −3 2 1
−2 −1 −2 1 1
−3 −1 −3 2 1
−8 −2 −7 5 2

)
, (A− 2I)2 =

( 0 0 0 0 0
0 0 0 0 0
−1 0 −1 1 0
−1 0 −1 1 0
−1 0 −1 1 0

)
, (A− 2I)3 = 0.

This gives that µA(x) = (x − 2)3. Let rj denote the jth row of (A − 2I); then one may observe that
r4 = r1 + r3, and r5 = 2r1 + r2 + r3, but that r1, r2, r3 are linearly independent, so rank(A − 2I) = 3,
and thus by the dimension theorem nullity(A − 2I) = 5 − 3 = 2. Thus there are two Jordan blocks for
eigenvalue 2. Furthermore, it is clear that rank(A − 2I)2 = 1 and hence nullity(A − 2I)2 = 4, so there
are 4− 2 = 2 blocks of size at least 2. As nullity(A− 2I)3 = 5, we have 5− 4 = 1 block of size at least 3.
Since the largest block has size 3 (by the minimal polynomial), we now know that there are two Jordan
blocks, one of size 3 and one of size 2.

To find the Jordan chains, we need v1,v2,v3,v4,v5 such that

(A− 2I)v5 = v4, (A− 2I)v4 = 0; (A− 2I)v3 = v2, (A− 2I)v2 = v1, (A− 2I)v1 = 0.

For the chain of length 3, we may choose v3 = (0, 0, 0, 1, 0)T, since then v2 = (A−2I)v3 = (1, 2, 1, 2, 5)T 6=
0 and v1 = (A − 2I)2v3 = (0, 0, 1, 1, 1)T 6= 0. For the chain of length 2, we must choose v5 so that
v4 = (A − 2I)v5 6= 0, but so that (A − 2I)2v5 = 0, and so that all the vi are linearly independent. In
general there is no easy way of doing this; we choose v5 = (−1, 0, 1, 0, 0)T, so that v4 = (A − 2I)v5 =

(0, 1, 0, 0, 1)T. Then, setting P =

(
0 1 0 0 −1
0 2 0 1 0
1 1 0 0 1
1 2 1 0 0
1 5 0 1 0

)
, we find J = P−1AP =

(
2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

)
.

2.5 Exponentiation of a Matrix

In this section, we define eA where A is a matrix.

Definition 2.25. If A ∈ Cn,n, we define eA to be the infinite series

eA = In +A+
A2

2
+
A3

6
+ . . . =

∞∑
k=1

Ak

k!

Warning: It is not in general true that eA+B = eAeB — though this does hold if AB = BA.

Lemma 2.26. 1. Let A and B ∈ Cn,n be similar, so B = P−1AP for some invertible matrix P .
Then eB = P−1eAP .

2. d
dte

At = AeAt

The first point on this lemma gives us a hint as to how we might compute the exponential of a matrix
— using the Jordan form! Given A = A1⊕ . . .⊕An, we have that eA = eA1 ⊕ . . .⊕ eAn , so it will suffice
to consider exponentiation of a single Jordan block.

Theorem 2.27. If J = Jλ,s is a Jordan block, then eJt is the matrix whose (i, j) entry is given by{
tj−ieλt

(j−i)! if j ≥ i
0 if j < i

Example 2.28. Given J =

2 1 0
0 2 0
0 0 1

, we have eJt =

e2t te2t 0
0 e2t 0
0 0 et


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We can use this to compute the solution to differential equations. Check your notes for MA133
Differential Equations for solution methods, remembering that we can now take exponents and
powers of matrices directly. We can also use a slight variation on this method to find the solution to
difference equations, using matrix powers.

2.6 Powers of a Matrix

Näıvely, we can use a similar strategy to exponentiation, using the Jordan canonical form. Observe that
if A = PJP−1, where J is the Jordan form of A, then An = PJnP−1. Again, it suffices to consider only
a single Jordan block:

Theorem 2.29. If J = Jλ,s is a Jordan block, then Jn is the matrix whose (i, j) entry is given by{(
n
j−i
)
λn−(j−i)

0 if j < i

where
(
n
k

)
is the binomial coefficient n!

k!(n−k)! ,

Example 2.30. Given J =

2 1 0
0 2 0
0 0 1

, we have Jn =

2n n2n−1 0
0 2n 0
0 0 1


However, if we do not have the Jordan form close to hand, we could be in for a long and annoying

computation. Fortunately, we can also find matrix powers using the Lagrange interpolation polynomial
of zn. Suppose that we know of an equation f that kills A — that is, f(A) = 0. The characteristic or
minimal polynomials are both good fits. Then dividing zn by f(z) with remainder gives

zn = f(z)g(z)− h(z)

which implies that An = h(A).

If we know the roots of f(z) (and we likely will, if it’s the characteristic or minimal polynomial) we
can find h more easily than simply doing the division. Let f have roots α1, . . . , αk with multiplicities
m1, . . . ,mk respectively. Then h can be found by solving the following system:

φ(t)(αj) = h(t)(αj), 1 ≤ j ≤ k, 0 ≤ t < mj

where φ(z) = zn and φ(n) is the nth derivative.

Example 2.31. Given J =

2 1 0
0 2 0
0 0 1

, we can see by inspection that the minimal polynomial of J is

f(z) = (z − 2)2(z − 1). This is of order three, so our Lagrange interpolation polynomial is of order two,
and so quadratic. Let h(z) = αz2 + βz + γ. The conditions for the coefficients are:

2n = h(2) = 4α+ 2β + γ

n2n−1 = h′(2) = 4α+ β

1n = h(1) = α+ β + γ

Solving gives α = n2n−1 − 2n + 1, β = −3n2n−1 + 4 · 2n − 4 and γ = 2n2n−1 − 3 · 2n + 4. So

Jn = (n2n−1 − 2n + 1)J2 + (−3n2n−1 + 4 · 2n − 4)J + (2n2n−1 − 3 · 2n + 4)I =

2n n2n−1 0
0 2n 0
0 0 1


as we had before.
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3 Bilinear Maps and Quadratic Forms

There are many situations in which we wish to consider maps from a vector space into its field of scalars.
(We may be interested in “linear forms” or “linear functionals”, i.e. linear maps f : V → K; for example,

the integral operator which maps a function g : [a, b] → R to its integral
∫ b
a
g(x) dx is a linear form on

the space of continuous functions C0([a, b]). More in MA3G7 Functional Analysis I.)
In this section we are interested in “quadratic forms”. Roughly speaking, a quadratic form q : V → K

is a map from a vector space into its field of scalars which is a homogeneous polynomial of degree 2, i.e. a
polynomial in which each term has total degree two, such as 6x2 + 12xy− 13xz+ 7y2. These have many
applications, such as conic sections; for example, the equation 5x2 + 5y2 − 6xy = 2 defines an ellipse.

3.1 Definitions

In order to actually define quadratic forms, we first introduce “bilinear forms”, and the more general
“bilinear maps”. Bilinear maps are functions τ : W × V → K which take two vectors and spit out a
number, and which are linear in each argument, as follows:

Definition 3.1. Let V , W be vector spaces over a field K. A bilinear map on W and V is a map
τ : W × V → K such that

τ(α1w1 + α2w2,v) = α1τ(w1,v) + α2τ(w2,v)

and τ(w, α1v1 + α2v2) = α1τ(w,v1) + α2τ(w,v2)

for all w,w1,w2 ∈W , all v,v1,v2 ∈ V , and α1, α2 ∈ K.

By choosing bases e1, . . . , en of V and f1, . . . , fm of W , we can set αij = τ(fi, ej) and form the
m× n matrix A = (αij) of τ with respect to the above bases. Now, given v ∈ V and w ∈W , by writing
v = x1e1+· · ·+xnen and w = y1f1+· · ·+ymfm, we can form the column vectors v = (x1, . . . , xn)T ∈ Kn,1

and w = (y1, . . . , ym)T ∈ Km,1. Then using the linearity properties in the definition, we get

τ(w,v) =

m∑
i=1

n∑
j=1

yiτ(fi, ej)xj =

m∑
i=1

n∑
j=1

yiαijxj = wTAv.

Suppose we choose new bases e′1, . . . e
′
n of V and f ′1, . . . , f

′
m of W , and let P and Q be the associated

basis change matrices. Then if v′ and w′ are the column vectors representing v and w with respect to
the bases {e′i} and {f ′j}, we have Pv′ = v and Qw′ = w, so wTAv = w′

T
QTAPv′, hence:

Theorem 3.2. Let τ : W × V → K be a bilinear map. Let A be the matrix of τ w.r.t. bases {ei} of
V and {fj} of W , and let B be the matrix of τ w.r.t. bases {e′i} of V and {f ′j} of W . If P is the basis

change matrix from {ei} to {e′i} and Q is the basis change matrix from {fj} to {f ′j}, then B = QTAP .

From now on, we will only consider the case where V = W ; then a bilinear map τ : V × V → K is
called a bilinear form on V . Then in the previous theorem, we have that Q = P and thus B = PTAP .

Definition 3.3. The rank of a bilinear form τ is defined as the rank of the associated matrix A (and
such is well-defined and independent of choice of basis).

The kernel of A and of AT also have special properties in relation to bilinear forms.

Definition 3.4. The kernel of A is equal to the space {v ∈ V : τ(w,v) = 0 ∀w ∈ V } (the right radical
of τ). The kernel of AT is equal to the space {v ∈ V : τ(v,w) = 0 ∀w ∈ V } (the left radical of τ).

In fact, we are almost exclusively interested in symmetric bilinear forms:

Definition 3.5. A bilinear form τ : V × V → K is symmetric if τ(w,v) = τ(v,w) for all v,w ∈ V .

Taking a basis {ei}, tells us that τ(ei, ej) = τ(ej , ei) for all 1 ≤ i, j ≤ n, and hence that αij = αji.
Thus AT = A, so a bilinear form is symmetric if and only if its matrix (w.r.t. any basis) is symmetric:

Definition 3.6. A n× n matrix A is called symmetric if AT = A.
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Matrices that represent the same bilinear form in different bases are called congruent.

Definition 3.7. Symmetric matrices A and B are called congruent if there exists an invertible matrix
P with B = PTAP .

Given a symmetric bilinear form, we can define a quadratic form:

Definition 3.8. Let V be a vector space over the field1 K. A quadratic form on V is a function
q : V → K defined by q(v) = τ(v,v), where τ : V × V → K is a symmetric bilinear form.

Given a basis e1, . . . , en of V , we let A = (αij) be the matrix of τ with respect to this basis, which
is symmetric (since τ is symmetric). Then we can write:

q(v) = vTAv =

n∑
i=1

n∑
j=1

xiαijxj =

n∑
i=1

αiix
2
i + 2

n∑
i=1

i−1∑
j=1

αijxixj .

For this reason we also call A the matrix of q. When n ≤ 3, we typically write x, y, z for x1, x2, x3.

3.2 Change of Variable under the General Linear Group

Just as we seek to reduce linear transformations into a canonical form in order that we can understand
their geometric properties, we can do the same with quadratic forms. Our first aim is simply to eliminate
all the xixj terms, leaving only terms of the form αiix

2
i .

Theorem 3.9. Let q be a quadratic form on V . Then there is a basis e′1, . . . , e
′
n of V such that

q(v) =
∑n
i=1 αi(x

′
i)

2, where the x′i are the coordinates of v with respect to e′1, . . . , e
′
n.

Equivalently, given any symmetric matrix A, there is an invertible matrix P such that PTAP is a
diagonal matrix, i.e. A is congruent to a diagonal matrix.

Sketch proof. This is essentially done by “completing the square”: assuming that α11 6= 0, we can write

q(v) = α11x
2
1 + 2α12x1x2 + · · ·+ 2α1nx1xn + q0(v) = α11

(
x1 +

α12

α11
x2 + · · ·+ α1n

α11
xn

)2

+ q1(v)

where q0 and q1 are quadratic forms only involving x2, . . . , xn. Then we can make the change of coordi-
nates x′1 = x1 + α12

α11
x2 + · · ·+ α1n

α11
xn, x′i = xi for 2 ≤ i ≤ n, which gets rid of the cross-terms involving

x1 and leaves us with q(v) = α11(x′i)
2 + q1(v), where q1 only involves x′2, . . . , x

′
n, and we are done by

induction; in the case that α11 = 0, we reduce to the previous case by first changing coordinates.

The rank of a quadratic form is defined to be the rank of its matrix A. Since P and PT are invertible,
PTAP has the same rank as A, so the rank of a quadratic form is independent of the choice of basis,
and if PTAP is diagonal then the number of non-zero entries on the diagonal is equal to the rank.

The rank of a quadratic form gives us one method of distinguishing between different quadratic forms.
Depending on the field we are working in, we can often reduce the quadratic form further.

Proposition 3.10. A quadratic form over C has the form q(v) =
∑r
i=1 x

2
i with respect to a suitable

basis, where r = rank(q).

Proof. Having reduced q to the form q(v) =
∑n
i=1 αi(xi)

2, permute the axes so the first r coefficients
are non-zero and the last n− r are zero, and then make the change x′i =

√
αiixi (for 1 ≤ i ≤ r).

Proposition 3.11 (Sylvester’s Theorem). A quadratic form over R has the form q(v) =
∑t
i=1 x

2
i −∑u

i=1 x
2
t+i with respect to a suitable basis, where t+ u = rank(q).

Proof. Almost the same as over C, except we must put x′i =
√
|αii|xi (and then reorder if necessary).

Theorem 3.12. Let V be a vector space over R and let q be a quadratic form over V . Let e1, . . . , en
and e′1, . . . , e

′
n be two bases of V with coordinates xi and x′i, such that q(v) =

∑t
i=1 x

2
i −
∑u
i=t+1 x

2
t+i =∑t′

i=1(x′i)
2 −

∑u′

i=1(x′t′+i)
2. Then t = t′ and u = u′, that is t and u are invariants of q.

The tuple (t, u) is called the signature of q.

1To talk about quadratic forms, we must be able to divide by 2 in K, thus we must assume that 1 + 1 6= 0; e.g. K
cannot be Z2, the field of two elements. If you don’t like technical details, you can safely assume that K is Q, R or C.
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3.3 Change of Variable under the Orthogonal Group

Previously, we allowed any change of coordinates. But if we consider, say, the ellipse 5x2+5y2−6xy = 2,
changing coordinates may not preserve the shape of the ellipse, which is often undesirable. We now study
orthogonal transformations, which preserve length and angle. Throughout this section we assume K = R.

Definition 3.13. A quadratic form q on V is said to be positive definite if q(v) > 0 for all 0 6= v ∈ V .

It is clear that q is positive definite if and only if q has rank n and signature n. The associated
symmetric bilinear form τ is also called positive definite when q is. If we choose a basis of V such that
the matrix of τ is In, then τ is just the standard scalar (or inner) product on V .

Definition 3.14. A Euclidean space is a vector space V over R together with a positive definite sym-
metric bilinear form τ .

We will assume for this section that V is a Euclidean space, and that the basis e1, . . . , en has been
chosen so that the matrix of τ is In. As τ is then the standard scalar product we will write v ·w instead
of τ(v,w); note that v ·w = vTw (where v, w are the column vectors of v, w resp.).

It is this scalar product which defines length and angle: for v ∈ V , the length of v is |v| :=
√

v · v,
and the angle between v and w is arccos v·w

|v||w| . Thus for a linear transformation to preserve length and

angle – in which case, geometrically, it is a rigid map – it must preserve the inner product on V :

Definition 3.15. A linear map T : V → V is said to be orthogonal if T (v)·T (w) = v ·w for all v,w ∈ V .

If A is the matrix of T , i.e. T (v) = Av, then T (v) · T (w) = vTATAw, hence T is orthogonal if and
only if ATA = In. Thus a linear map is orthogonal if and only if its matrix is orthogonal:

Definition 3.16. An n× n matrix A is called orthogonal if ATA = In, or equivalently if AT = A−1.

We can characterise this more in terms of geometric properties as follows:

Definition 3.17. A set of vectors f1, . . . , fn of V which satisfies fi · fi = 1, and fi · fj = 0 when i 6= j, is
called orthonormal. If the {fi} form a basis, they are called an orthonormal basis.

Proposition 3.18. A linear map T : V → V is orthogonal if and only if T (e1), . . . , T (en) is an orthonor-
mal basis of V (where the ej are defined as above).

The Gram–Schmidt algorithm allows us to complete any orthonormal set to an orthonormal basis:

Theorem 3.19 (Gram–Schmidt). Let V be a Euclidean space of dimension n, and suppose f1 . . . , fr are
orthonormal (0 ≤ r ≤ n). Then f1 . . . , fr can be extended to an orthonormal basis f1 . . . , fn.

Sketch proof. First we extend f1 . . . , fr to any basis f1 . . . , fr,gr+1, . . . ,gn. The trick is then to define
f ′r+1 = gr+1 −

∑r
i=1(fi · gr+1)fi. This removes all components of gr+1 in the directions of f1, . . . , fr, and

then the only step left is to normalise it by setting fr+1 =
f ′r+1

|f ′r+1|
, and proceed by induction on n− r.

The main result of this section is to show that we can always change coordinates so that the matrix
of a quadratic form is diagonal, and do so in a way that preserves the geometric properties of the form:

Theorem 3.20. Let q be a quadratic form on a Euclidean space V . Then there is an orthonormal basis
e′1, . . . , e

′
n of V such that q(v) =

∑n
i=1 αi(x

′
i)

2, where the x′i are the coordinates of v with respect to
e′1, . . . , e

′
n, and the αi are uniquely determined by q. Equivalently, given any symmetric matrix A, there

is an orthogonal matrix P such that PTAP is a diagonal matrix.

The following two easy lemmas are used both in the proof of the theorem and in doing calculations:

Lemma 3.21. Let A be a real symmetric matrix. Then all complex eigenvalues of A lie in R.

Proof. Suppose Av = λv for some λ ∈ C. Then λvTv = (Av)Tv = vTAv = vTλv = λvTv. As v 6= 0,
vTv 6= 0, and hence λ = λ, and thus λ ∈ R.

Lemma 3.22. Let A be a real symmetric matrix, and let λ1, λ2 be two distinct eigenvalues of A, with
corresponding eigenvectors v1 and v2. Then v1 · v2 = 0.
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Proof. Suppose Av1 = λ1v1 and Av2 = λ2v2, with λ1 6= λ2. Transposing the first and multiplying by v2

gives vT
1 Av2 = λ1v

T
1 v2 (∗). Similarly vT

2 Av1 = λ2v
T
2 v1; transposing this yields vT

1 Av2 = λ2v
T
1 v2 (†).

Subtracting (†) from (∗) gives (λ2 − λ1)vT
1 v2 = 0, so as λ1 6= λ2, vT

1 v2 = 0.

Example 3.23. Let q : R3 → R be the quadratic form given by q(x, y, z) = 3x2 + 3y2 + 4xy+ 2xz−2yz.

This has matrix A =
(

3 2 1
2 3 −1
1 −1 0

)
. We find cA(x) = −x3 + 6x2 − 3x− 10 = (5− x)(2− x)(−1− x). Thus

the eigenvalues are 5, 2, and −1. For λ = 5, an eigenvector is (1, 1, 0)T. For λ = 2, an eigenvector is
(1,−1, 1)T. For λ = −1, an eigenvector2 is (1,−1,−2)T. Normalising the eigenvectors, we get

P =

1/
√

2 1/
√

3 1/
√

6

1/
√

2 −1/
√

3 −1/
√

6

0 1/
√

3 −2/
√

6

 , PTAP =

5 0 0
0 2 0
0 0 −1

 .

Example 3.24 (Conic sections and quadrics). The general second-degree equation in n variables is∑n
i=1 αix

2
i +
∑n
i=1

∑i−1
j=1 αijxixj +

∑n
i=1 βixi+γ = 0, which defines a quadric curve or surface in Rn. By

applying the above theory, we can perform an orthogonal transformation to eliminate the xixj terms,
and further orthogonal transformations reduce it so that either exactly one βi 6= 0 or γ 6= 0.

Being able to take a quadric in two or three variables and sketch its graph is an important skill.
The three key shapes to remember in two dimensions are the ellipse ax2 + by2 = 1, the hyperbola
ax2 − by2 = 1 and the parabola ax2 + y = 0 (where a, b > 0). Knowing these should allow you to
figure out any three-dimensional quadric, by figuring out the level sets or by analogy. (Lack of space
here unfortunately prevents us from including a table of all the possibilities). It helps to keep in mind
the degenerate cases (e.g. straight lines, points). Remember also that some surfaces can be constructed
using generators — straight lines through the origin for which every point on the line is on the surface.

3.4 Unitary, Hermitian and Normal Matrices

The results of the last section only applied for vector spaces over R. Here we generalise the results to
vector spaces over C. Recall that z denotes the complex conjugate of z ∈ C, and A denotes the result of
replacing each entry of A by its complex conjugate. We denote the conjugate transpose of A by A∗ = AT.

Definition 3.25. Let V be a vector space over C. A sesquilinear form is a function ω : V × V → C
which is linear in the second argument and conjugate-linear in the first argument, that is

ω(α1u1 + α2u2,v) = α1ω(u1,v) + α2ω(u2,v)

and ω(u, α1v1 + α2v2) = α1ω(u,v1) + α2ω(u,v2)

for all u,u1,u2,v,v1,v2 ∈ V , and α1, α2 ∈ C.

The standard inner product on Cn is the sesquilinear form defined by v · w = v∗w (rather than
vTw). The change is so that |v|2 = v · v = v∗v is still a real number. (Note that this is not a bilinear
form, nor is it symmetric, since v ·w = w · v, and hence (λv) ·w = λ(v ·w).)

The complex analogue of an orthogonal map – one which preserves the complex inner product – is a
unitary map:

Definition 3.26. A linear map T : Cn → Cn is called unitary if T (v) · T (w) = v ·w for all v,w ∈ Cn.

If A is the matrix of T , then T (v) = Av, so T (v) · T (w) = v∗A∗Aw; hence T is unitary if and only
if A∗A = In. Thus a linear map is unitary if and only if its matrix is unitary:

Definition 3.27. A matrix A ∈ Cn,n is called unitary if A∗A = In.

The complex analogue of a symmetric matrix is:

Definition 3.28. A matrix A ∈ Cn,n is called Hermitian if A∗ = A.

2Note that having figured out the first two eigenvectors, we could simply find a vector orthogonal to both, perhaps using
the cross product, and take this as our eigenvector (using lemma 3.22).
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One would expect to extend theorem 3.20 to Hermitian matrices, but the generalisation in fact applies
to the wider class of normal matrices, which includes all Hermitian matrices and all unitary matrices:

Definition 3.29. A matrix A ∈ Cn,n is called normal if AA∗ = A∗A.

Theorem 3.30. Let A ∈ Cn,n be a normal matrix. Then there exists a unitary matrix P ∈ Cn,n such
that P ∗AP is diagonal.

In practice, finding such a P is done in a similar way to the real case.

4 Finitely Generated Abelian Groups

Groups are one of the most fundamental and important constructions in mathematics. When they are
first introduced in MA136 Introduction to Abstract Algebra, however, they can seem rather
abstract. In this section we apply results from linear algebra to classify all finitely generated abelian
groups, thus opening up a large number of concrete examples of groups. (That’s not to say that non-
abelian groups are unimportant: in fact, they form at least half of MA249 Algebra II: Groups and Rings.)
Before we can classify finitely-generated abelian groups, we had better know what they are, so we start
by defining everything.

Definition 4.1. A group is a set G together with a binary operation ◦ satisfying:
(i) For every g, h ∈ G, g ◦ h ∈ G (closure).
(ii) For every g, h, k ∈ G, g ◦ (h ◦ k) = (g ◦ h) ◦ k (associativity).
(iii) There exists e ∈ G such that e ◦ g = g ◦ e = g for every g ∈ G (existence of an identity, e).
(iv) For every g ∈ G there exists g′ ∈ G such that g′ ◦ g = g ◦ g′ = e (existence of inverses).

Definition 4.2. An abelian group is a group G which satisfies the commutative law:
(v) For every g, h ∈ G, g ◦ h = h ◦ g.

The following result is so fundamental that its use usually goes unreported:

Lemma 4.3 (Cancellation laws). Let G be a group, and let g, h, k ∈ G. If g ◦ h = g ◦ k, then h = k;
similarly, if h ◦ g = k ◦ g, then h = k.

Very often, two groups have the same structure, but with the elements “labelled” differently. When
this is the case, we call the groups isomorphic. More generally, we can define “structure-preserving
maps”, or homomorphisms, between groups:

Definition 4.4. A function φ : G → H between two groups G and H is called an homomorphism if
φ(g1 ◦ g2) = φ(g1) ◦ φ(g2) for all g1, g2 ∈ G.
• If φ is injective, i.e. φ(g1) = φ(g2) =⇒ g1 = g2, then φ is called a monomorphism.
• If φ is surjective, i.e. im(φ) = H, then φ is called an epimorphism.
• If φ is bijective3 then φ is called an isomorphism; G and H are called isomorphic, written G ∼= H.

If φ : G → H is a homomorphism, then φ(eG) = eH , (i.e. the identity element is always mapped to the
identity element), and φ(g′) = (φ(g))′, (i.e. the inverse of φ(g) is just φ applied to the inverse of g).

For abelian groups, the notation ◦ for the binary operation is cumbersome. So, from now on:
• We will only talk about abelian groups (unless otherwise stated).
• We will notate the binary operation of an abelian group by addition (i.e. using + instead of ◦).
• We will notate the identity element by 0 instead of e (or 0G if we need to specify which group).
• We will notate the inverse element of g by −g instead of g′.

(For non-abelian groups, it is more usual to use multiplicative notation, using 1 for the identity and g−1

for the inverse of g.)

3It might be better to say an isomorphism is a bijective homomorphism whose inverse is also a homomorphism, but
since it follows from φ being a bijective homomorphism it is usually omitted. For other structure-preserving maps, the
distinction is important: a continuous bijection between topological spaces does not necessarily have continuous inverse,
and thus is not always a homeomorphism; see MA222 Metric Spaces. Interested readers should Google “category theory”.
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4.1 Generators and Cyclic Groups

For an element g of a group G, we define ng = g + · · · + g (n times), where n ∈ N. That is, 1g = g,
2g = g + g, 3g = g + g + g, etc. We extend this to n ∈ Z by defining 0g = 0 and (−n)g = −(ng) (it
then follows that (−n)g = n(−g)). (In multiplicative notation, this is usually written as gn instead of
ng.) The fundamental observation to make is that multiples of an element commute with each other,
i.e. mg + ng = ng +mg = (m+ n)g.

Definition 4.5. Let g ∈ G. Define the order of g to be the least integer n > 0 with nx = 0, if such an
n exists, and write |g| = n. If there is no such n, g is said to have infinite order and we write |g| =∞.

Note that if φ : G → H is an isomorphism, then |g| = |φ(g)|, i.e. orders of elements are preserved
under isomorphism.

Definition 4.6. A group G is called cyclic if there exists x ∈ G such that G = {nx | n ∈ Z}, that is
every element of G is of the form nx for some n ∈ Z. We call x a generator of G.

By the above remark, a cyclic group is necessarily abelian. Note that Z and Zn (under addition) are
cyclic with generator 1. In fact, up to isomorphism, these are all the cyclic groups:

Proposition 4.7. Any cyclic group G is isomorphic either to Z, or to Zn for some n ∈ N (with n > 0).

Sketch proof. Let G be cyclic with generator x; thus G = {nx | n ∈ Z}. Either all the nx (for n ∈ Z)
are distinct, in which case G ∼= Z. Otherwise, there must be two which are equal, say lx = mx (l < m),
so (m− l)x = 0 with m > l; take n to be the least natural number with nx = 0, then G ∼= Zn.

A group is cyclic if it has one generator. We now consider groups generated by more than one element.

Definition 4.8. A group G is generated (or spanned) by X ⊆ G if every g ∈ G can be written as

g =
∑k
i=1 nixi, with k ∈ N, xi ∈ X and ni ∈ Z; we write G = 〈X〉. In particular, if X is finite, we say

that G is finitely generated ; if X = {x1, . . . , xn} then we write G = 〈x1, . . . , xn〉.

We have already seen that a group generated by X with |X| = 1 (i.e. cyclic) must be isomorphic to
Zn or Z. In order to classify all finitely-generated abelian groups, we introduce the direct sum of groups
as a way of putting a group operation on the Cartesian product of groups. (In general group theory this
is more often called the direct product.)

Definition 4.9. Given groups G1, . . . , Gn, we define the direct sum G1 ⊕ · · · ⊕ Gn to be the set
G1 ⊕ · · · ⊕ Gn = {(g1, . . . , gn) | gi ∈ Gi} with the binary operation given by componentwise addi-
tion, i.e. (g1, . . . , gn) + (h1, . . . , hn) := (g1 + h1, . . . , gn + hn). This is a group with identity element
(0, . . . , 0) and −(g1, . . . , gn) = (−g1, . . . ,−gn).

We will see that all finitely-generated abelian groups are isomorphic to a direct sum of cyclic groups.

4.2 Subgroups and Cosets

Definition 4.10. Let G be a group and H ⊆ G. We call H a subgroup of G if H together with the
binary operation on G is a group in its own right. (We sometimes write H ≤ G.)

In practice, we can avoid checking the associativity and identity elements:

Proposition 4.11. A non-empty subset H ⊆ G is a subgroup of G if and only if h1, h2 ∈ H =⇒
h1 + h2 ∈ H, and h ∈ H =⇒ −h ∈ H.

Note that {0} and G are always subgroups of G. More importantly, if g ∈ G, then the set {ng | n ∈ Z}
of integer multiples of g is a subgroup of G, called the cyclic subgroup generated by g.

Definition 4.12. Let g ∈ G, and let H be a subgroup of G. Define H+ g = {h+ g | h ∈ H}, the (right)
coset of H by g.

Note that since all our groups are abelian, H + g = g + H; in general, however, the right and left
cosets, denoted Hg and gH respectively, can be different.
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Example 4.13. Let G = Z, and let H = 6Z = {6n | n ∈ Z}, the cyclic subgroup generated by 6. Then
there are six distinct cosets of 6Z in Z, namely 6Z, 6Z + 1, 6Z + 2, 6Z + 3, 6Z + 4, and 6Z + 5, which
correspond to those integers which leave remainder 0, 1, 2, 3, 4 and 5 (respectively) on division by 6.

Proposition 4.14. Two right cosets H + g1 and H + g2 of H in G are either equal or disjoint; hence
the cosets of H partition G.

Proposition 4.15. If H is a finite subgroup of G, then all right cosets of H have exactly |H| elements.

From the last two propositions, we get Lagrange’s theorem (which also holds for non-abelian groups):

Theorem 4.16 (Lagrange’s Theorem). Let H be a subgroup of a finite (abelian) group G. Then the
order of H divides the order of G.

By considering the cyclic subgroup of G generated by an element g, i.e. H = {ng | n ∈ Z}, we see
that if |g| = n then |H| = n, and hence:

Proposition 4.17. Let G be a finite (abelian) group, and let g ∈ G. Then |g| divides |G|.

4.3 Quotient Groups and the First Isomorphism Theorem

We have already seen two ways of creating new groups from old ones, namely subgroups and direct sums,
and we will presently define a third. Let H be a subgroup of an abelian group G, and consider the set
G/H of cosets of H in G, i.e. {H + g | g ∈ G}. Since the cosets of H partition G, each element of G
lies in exactly one of the cosets Hg. By dividing G into the cosets of H, we have “quotiented out” the
subgroup H. We will now define a binary operation on G/H that turns it into a group.

Definition 4.18. If A and B are subsets of a group G, define the sum4 A+B = {a+ b | a ∈ A, b ∈ B}.

The binary operation on G/H rests on the following fundamental lemma:

Lemma 4.19. Let H be a subgroup of an abelian group G, and let g1, g2 ∈ G. Then (H+g1)+(H+g2) =
H + (g1 + g2).

Note: This is the first point at which it is crucial that G is abelian. In general, if H is a subgroup of any group
G, it is not necessarily the case that (Hg1)(Hg2) = H(g1g2). In fact, this happens if and only if gH = Hg for
every g ∈ G, i.e. every left coset is also a right coset; when this happens, we call H a normal subgroup of G. The
general case will be done in MA249 Algebra II: Groups and Rings.

Theorem 4.20. Let H be a subgroup of an abelian group G. Then the set G/H of cosets of H in G
forms a group under addition of cosets, which is called the quotient group of G by H.

Proof. The lemma gives us closure; associativity follows (tediously) from associativity of G; the identity
is H = H + 0; and the inverse of H + g is H + (−g), which we write as H − g.

Definition 4.21. The index of H in G, denoted |G : H|, is the number of distinct cosets of H in G.

If G is finite, by Lagrange’s theorem we have |G/H| = |G : H| = |G|
|H| .

Example 4.22. Consider again G = Z with H = {6n | n ∈ Z}. As there are six distinct cosets of
6Z in Z, we have that Z/6Z = {6Z, 6Z + 1, 6Z + 2, 6Z + 3, 6Z + 4, 6Z + 5}, with addition given by
(6Z+m) + (6Z+n) = 6Z+ (m+n). That is, when you add a number whose remainder on division by 6
is m to a number whose remainder on division by 6 is n, you get a number whose remainder on division
by 6 is m+ n.

Note that adding together k copies of 6Z+1 gives you 6Z+k, so the quotient group Z/6Z is generated
by 6Z + 1. Hence it is a cyclic group of order 6, and so Z/6Z ∼= Z6. That is, addition of cosets of 6Z is
exactly the same as addition modulo 6. The same is true in general5: Z/nZ ∼= Zn for any integer n > 0.

4In multiplicative notation, this is called the (Frobenius) product and written AB.
5By the way, if you feel cheated by this example, as if it has said absolutely nothing, then GOOD!
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Understanding quotient groups can be tricky. However, the First Isomorphism Theorem is a very
useful way of realising any quotient group G/H as the image of G under a suitable homomorphism. The
subgroup H that we “quotient out by” turns out to be the kernel of the homomorphism, which is the
set of all elements which map to the identity element of the target:

Definition 4.23. Let φ : G→ H be a homomorphism. We define ker(φ) = {g ∈ G | φ(g) = 0H} ⊆ G to
be the kernel of φ, and im(φ) = {φ(g) | g ∈ G} ⊆ H to be the image of φ.

Lemma 4.24. For a homomorphism φ : G→ H, ker(φ) is a subgroup of G and im(φ) a subgroup of H.

We know that φ(0G) = 0H for any homomorphism, so the kernel is never empty. When this is the
only element that is mapped to 0H , the homomorphism is injective:

Lemma 4.25. Let φ : G→ H be a homomorphism. Then φ is injective if and only if ker(φ) = {0G}.

Projecting from the group G to the set of cosets G/H gives a homomorphism with kernel H:

Proposition 4.26. Let H be a subgroup of an abelian group G. Then φ : G → G/H defined by
φ(g) = H + g is a surjective homomorphism with kernel H.

The content of the First Isomorphism Theorem is that every quotient group appears in such a form:

Theorem 4.27 (First Isomorphism Theorem). Let φ : G→ H be a homomorphism (of abelian groups)
with kernel K. Then there is an isomorphism φ̄ : G/K → im(φ) defined by φ̄(K+g) = φ(g) for all g ∈ G;
that is, G/K ∼= im(φ).

That is, given any homomorphism φ, the quotient of a group by the kernel is isomorphic to the image.

4.4 Abelian Groups and Matrices Over Z
Definition 4.28. A finitely generated abelian group is called free abelian if it is isomorphic to Zn for
some n ≥ 0, where Zn denotes the direct sum of n copies of Z, Z⊕ · · · ⊕Z. (In the case n = 0, Z0 is the
trivial group {0}.)

In order to classify all finitely generated abelian groups, we draw parallels between Zn and Rn. Firstly,
we define a basis of Zn, and indeed of any abelian group.

Definition 4.29. LetG be an abelian group. The elements x1, . . . , xn ∈ G are called linearly independent
if α1x1 + · · · + αnxn = 0G with αi ∈ Z implies α1 = · · · = αn = 0Z. Furthermore, the elements
x1, . . . , xn ∈ G form a free basis of G if and only if they are linearly independent and generate (span) G.

Lemma 4.30. x1, . . . , xn form a free basis of G if and only if every element g ∈ G has a unique expression
g = α1x1 + · · ·+ αnxn with αi ∈ Z.

For example, xi = (0, . . . , 0, 1, 0, . . . , 0) where the 1 occurs in the ith place, with 1 ≤ i ≤ n, forms a
free basis of Zn. But be careful: (1, 0), (0, 2) does not form a free basis of Z2, since we cannot get (0, 1)
from an integer linear combination of (1, 0), (0, 2).

Proposition 4.31. An abelian group G is free abelian if and only if it has a free basis x1, . . . , xn. If so,
there is an isomorphism φ : G→ Zn given by φ(xi) = xi.

Just as in linear algebra, we can define change of basis matrices. Writing y1, . . . ,ym ∈ Zn with
yj =

∑n
i=1 ρijxi, it can be shown that y1, . . . ,ym is a free basis of Zn if and only if n = m and P is an

invertible matrix such that P−1 has entries in Z, or equivalently detP = ±1. An n × n matrix P with
entries in Z is called unimodular if detP = ±1. Let A be an m×n matrix over Z. We define unimodular
elementary row and column operations as follows:
(UR1) Replace some row ri of A by ri + trj , where j 6= i and t ∈ Z;
(UR2) Interchange two rows of A;
(UR3) Replace some row ri of A by −ri.
(UC1), (UC2) and (UC3) are defined analogously for column operations.
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Our strategy for classifying finitely-generated abelian groups is to express a group as a matrix, reduce
that matrix to a “normal form” by means of row and column operations, and read off what the group is
from that. The reason this works is the following theorem:

Theorem 4.32. Let A be an m×n matrix over Z with rank r. Then, by using a sequence of unimodular
elementary row and column operations, we can reduce A to a matrix B = (βij) such that βii = di for
1 ≤ i ≤ r and βij = 0 otherwise, where the integers di satisfy di > 0 and di | di+1 for 1 ≤ i ≤ r.
Furthermore, the di are uniquely determined by A.

The resulting form of the matrix is called Smith Normal Form. The strategy by which we do this
is to reduce the size of entries in the first row and column, until the top left entry divides all the other
entries in the first row and column, so we can turn them all to zeroes, and proceed to do the same to
the second row and column and so on. An example is, as always, worth a thousand theorems.

Example 4.33. Let A =
(
12 6 −42
18 24 −18

)
. The entry smallest in absolute value is seen to be 6, so we proceed

as follows:(
12 6 −42
18 24 −18

)
−−−−−→c2 ↔ c1

(
6 12 −42
24 18 −18

)
−−−−−−−−−−−−−−−−−−−−−−→
c2 → c2 − 2c1, c3 → c3 + 7c1

(
6 0 0
24 −30 150

)
−−−−−−−−−−→
r2 → r2 − 4r1

(
6 0 0
0 −30 150

)
−−−−−−−−−−→
c3 → c3 + 5c2

(
6 0 0
0 −30 0

)
−−−−−−→
c2 → −c2

(
6 0 0
0 30 0

)
Then 6 | 30, and all the other entries are zero, so we are done.

To put matrices over Z to work classifying finitely-generated abelian groups, we need one more
technical lemma:

Lemma 4.34. Any subgroup of a finitely generated abelian group is finitely generated.

So, how do we set up the link between finitely-generated abelian groups and matrices over Z? Well,
let H be a subgroup of the free abelian group Zn, and suppose that H is generated by v1, . . . ,vm ∈ Zn.
Then we can represent H as a an n×m matrix A whose columns are vT

1 , . . . ,v
T
m.

Now, what effect does applying unimodular row and column operations to A have on the subgroup H?
Well, since unimodular elementary row operations are invertible, when we apply unimodular elementary
row operations to A, we may apply the inverse of the operation to the free basis of Zn; thus the resulting
matrix represents the same subgroup H of Zn using a different free basis of Zn.

The unimodular elementary column operations (UC1), (UC2) and (UC3) respectively amount to
replacing a generator vi by vi + tvj , interchanging two generators, and changing vi to −vi. All of these
operations do not change the subgroup being generated. Summing up, we have:

Proposition 4.35. Let A,B ∈ Zn,m, and suppose B is obtained from A by a sequence of unimodular
row and column operations. Then the subgroups of Zn represented by A and B are the same, using
(possibly) different free bases of Zn.

In particular, given a subgroup H of Zn, we may reduce its matrix A to Smith Normal Form:

Theorem 4.36. Let H be a subgroup of Zn. Then there exists a free basis y1, . . . ,yn of Zn such that
H = 〈d1y1, . . . , dryr〉, where each di > 0 and di | di+1 for all 1 ≤ i < r.

Example 4.37. Let H = 〈12x1 + 18x2, 6x1 + 24x2,−42x1 + −18x2〉. The associated matrix is A =(
12 6 −42
18 24 −18

)
. As above, its Smith normal form is ( 6 0 0

0 30 0 ). Looking at the row operations we performed,
we did r2 → r2 − 4r1, so we must do the inverse operation to the basis matrix to get the new basis
matrix; thus doing r2 → r2 + 4r1 to ( 1 0

0 1 ) yields ( 1 0
4 1 ). Thus, letting y1 = (1, 4) and y2 = (0, 1), we see

that H = 〈6y1, 30y2〉. (Check it!)

Now, let G = 〈x1, . . . , xn〉 be any finitely-generated abelian group, and let x1, . . . ,xn be the standard
free basis of Zn. Then by defining φ : Zn → G by the following (where αi ∈ Z):

φ(α1x1 + · · ·+ αnxn) = α1x1 + · · ·+ αnxn,
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we get an epimorphism onto G. By the First Isomorphism Theorem, G ∼= Zn/K, where K = ker(φ).
By definition, K = {(α1, . . . , αn) ∈ Zn | α1x1 + . . . αnxn = 0G}. Since this is a subgroup of a finitely-
generated abelian group, it is finitely generated by lemma 4.34, say K = 〈v1, . . . ,vm〉 for vi ∈ Zn. The
notation6 〈x1, . . . ,xn | v1, . . . ,vm〉 is used to denote Zn/K, so we have G ∼= 〈x1, . . . ,xn | v1, . . . ,vm〉.
Applying theorem 4.36 to K we see there is a free basis y1, . . . ,yn of Zn such that K = 〈d1y1, . . . , dryr〉,
where each di > 0 and di | di+1 for all 1 ≤ i < r, so G ∼= 〈y1, . . . ,yn | d1y1, . . . , dryr〉. It can be shown
that 〈y1, . . . ,yn | d1y1, . . . , dryr〉 ∼= Zd1 ⊕ · · · ⊕ Zdr ⊕ Zn−r. Hence we end up at the main theorem:

Theorem 4.38 (Fundamental Theorem of Finitely Generated Abelian Groups). If G = 〈x1, . . . , xn〉 is
a finitely-generated abelian group, then for some r ≤ n there are d1, . . . , dr ∈ Z such that each di > 0
with d1 > 1 and di | di+1 for all 1 ≤ i < r, such that

G ∼= Zd1 ⊕ · · · ⊕ Zdr ⊕ Zn−r.

and the integers r, d1, . . . , dr are uniquely determined.

Example 4.39. Let G = 〈x1,x2 | 12x1 + 18x2, 6x1 + 24x2,−42x1 − 18x2〉. The associated matrix is
A =

(
12 6 −42
18 24 −18

)
, and its Smith normal form is ( 6 0 0

0 30 0 ). Writing H = 〈6y1, 30y2〉, we may simply read
off that G ∼= 〈x1,x2〉/H ∼= 〈y1,y2 | 6y1, 30y2〉 ∼= Z6 ⊕ Z30, a finite group of order 180.

In addition, the classification theorem allows us to classify abelian groups of a given finite order n
(up to isomorphism), since they correspond to decompositions n = d1d2 . . . dr where di | di+1 for all i:

Example 4.40. Let G be an abelian group of order 360. Then, as 360 = 23 · 32 · 5, the possible
decompositions are 360, 2× 180, 2× 2× 90, 2× 6× 30, 3× 120, and 6× 60. Thus G must be isomorphic
to one of Z360, Z2 ⊕ Z180, Z2 ⊕ Z2 ⊕ Z90, Z2 ⊕ Z6 ⊕ Z30, Z3 ⊕ Z120, or Z6 ⊕ Z60.

To prove none of these are isomorphic, one uses orders of elements: Z360 has an element of order 360,
but none of the others do, so it cannot be isomorphic to any of the others; then Z2⊕Z180 has an element
of order 180, which the other four do not, and so on.

6In general 〈xi | yj〉 is called a presentation of a group, and it denotes the free group generated by the xi, quotiented
by the normal subgroup generated by the yj . Since we are dealing only with abelian groups, we are abusing notation to
mean the free abelian group generated by the xi, quotiented by the abelian subgroup generated by the yj .
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