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1 The Crystalline State

1.1 The Crystal Lattice

• Choose an atom to be the origin.

• Identify all positions within the crystal that are identical in all respects to the origin, assuming an infinite
crystal.

• This set of identical points is called the crystal lattice. Lattice is not in general the same as the structure.

• A crystal lattice is independent of the choice of origin.

• The coordinate axis is obtained by joining the lattice at the origin to its neighbours (two in 2D, three in
3D).

• Conventionally choose coordinates which reflect the symmetry of the lattice. Label a,b, c.

• The lattice is completely specified by giving the lengths of a,b, c and the angles between them α, β, γ.
All points in the lattice can be reached by vectors of the form:

r = ua+ vb+ wc where u, v, w ∈ Z (1)
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α 0, 2π π
3

π
2

2π
3 π

n 1 6 4 3 2
Shape

Table 1: Table of symmetry representations.

• Lattice vectors also define a unit cell, a shape defined so that the entire crystal can be formed by stacking
such cells.

• Volume of a unit cell in a 3D lattice can be found by Vc = |a× b · c|

• A Bravais lattice is one of 14 possible lattices defined in 1 containing one, two, three, four and six fold
rotation axes.

• The smallest possible unit cell is said to be a primitive unit cell.

• A basis of the structure is found by identifying the group of atoms which, when associated with each
lattice point, completely generates the structure. If the basis vector is r = xa+ yb+ zc then the position
of an extra atom included in the basis is said to be (x, y, z).

1.2 Point Symmetry

Point symmetry is the symmetry of an object as observed from a point. It is defined by a symmetry operation
which translates an object onto itself. Here it is used to describe the local symmetry of the unit cell within a
lattice. Different points in the lattice will have different point symmetry.

These are basic point symmetry operations

• Rotation about an axis by an angle α = 2π
n , where n gives the degree of symmetry. The degree of

symmetry is denoted by a shape on the point in question as defined in table 1.

• Inversion through a point (x, y, z)←→ (x̄, ȳ, z̄).

• Reflection, which in 2D is like roto inversion.

The point symmetry of the basis must be compatible with the underlying symmetry of the lattice to form
a crystal. It is clear that only some point groups can be placed on high symmetry lattices. Tetrads can only
be placed on a square lattuce and triads and hexads can only be placed on a hexagonal lattice.

1.3 Crystal Planes and Miller Indices

• We can identify sets of equally spaced parallel planes in a lattice. A plane is defined by the Miller indices
(h k l) where the plane that passes closest to the origin has intercepts at a/h, b/k, and c/l. Negative
intercepts are denoted with a bar. The set of (h̄ k̄ l̄) planes is of course equivalent to the set of (h k l)
planes.

• For a crystal with an orthogonal crystal axis, adjacent lattice planes are separated by

d =
1√

h2

a2 + k2

b2 + l2

c2

(2)

• Note if a.b, and c define a primitive unit cell then Miller indices do not have a common factor.

• For crystals with high level of symmetries we can define sets of planes related by symmetry, being equiva-
lent from an atomic point of view. For example, for crystals with cubic symmetry, the three sets of planes
(1 0 0), (0 1 0) and (0 0 1) are related and belong to the form {1 0 0}, where curly brackets mean all planes
equivalent by symmetry to the given plane.

• A direction in a lattice r = ua+ vb+ wc is written [u v w]. This is not a Miller index, but in the cubic
case will be perpendicular to the plane (u v w).
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(a) The construction of a FCC structure from
stacking spheres.

(b) Rhombic dodecahedron, an atomic sphere of
influence in a FCC structure.

(c) The conventional unit cell which shows the symmetry of a FCC structure. Four
times bigger than the primitive cell.

Figure 1: FCC structure

1.4 Close-Packing Spheres

Spheres can be packed with varying closeness depending on the structure of the material they form. The
closeness of the packing, or the packing ratio (see below), is dependent on the forces between atoms, and the
closer it is to ‘ideal’ for a particular structure, the more well behaved the material will be. To understand the
packing ratio, we must first understand some crystal structures.

Packing Structures

• We can consider packing in terms of a 2D cross section. After circles are closely packed, the next layer
will fit into half the interstices in the same arrangement of the first. This can be repeated for the set of
interstices that have no atom centred on them to give an ABCABC. . . stacking sequence (Figure 1). This
is face-centred cubic (FCC) or cubic close-packed (CCP). Examples of elements which crystalise
into FCC structure are aluminium, calcium, nickel, copper, silver, gold, lead, neon, argon, krypton and
xenon.

• The atomic coordination polyhedron is a way to visualise the environment of an atom in a FCC
structure. It is formed from planes which are perpendicular bisectors of lines joining an atom to its
neighbours. It represents a ‘sphere of influence’ of an atom, and in this case is a rhombic dodecahedron
(Figure 1b), with 12 faces corresponding to its 12 nearest neighbours; hence each atom is said to have a
coordination number of 12. This is also a type of unit cell known as the Wigner-Seitz cell.

• Hexagonal close-packing (HCP) (Figure 2) is similar to FCC except that we remove the C layer from
Figure 1a to get an ABAB. . . structure. In this case all the A- plane atoms have an identical environment
and can be considered lattice points (see section 1.1). The unit cell contains a basis of an A atom at
(0, 0, 0) and a B atom at ( 2

3 ,
1
3 ,

1
2 ). The close-packed A planes are the (001) planes with B planes between

them.

• Due to the different environments of A and B atoms, their coordination polyhedra have the same shape
but different orientations.
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• For a HCP structure we can now define the packing ratio as c/a where c is the distance between an A
plane to the next A plane, and a is the length of the base of the cell. The ‘ideal’ ratio can be found by
geometry to be (8/3)1/2 ≈ 1.633.

• In reality, because atoms are not hard spheres, packing ratios deviate from this value. Some examples of
some ratios in HCP structures: magnesium (1.623), titanium (1.586), zinc (1.861), cadmium (1.886) and
helium (1.633).

Figure 2: Hexagonal close-packing, in 3D on the left and on the right as seen from above.

• In a body-centred cubic (BCC) structure the environments are the same for all atoms, hence the lattice
is equivalent to the structure. It is only slightly less closely packed than a FCC structure.

• The non-primitive cubic unit cell is the conventional choice for BCC, and contains two lattice points.

• The BCC coordination polyhedra has 8 hexagonal faces indicating ‘contact’ with 8 nearest neighbours of
each atom. Thus the coordination number is 8. This is smaller than the 12 for FCC and HCP structures,
however, in BCC we find 6 smaller square faces, indicating neighbours not much further away than the
nearest.

• The metallic elements lithium, sodium, potassium, chromium, barium and tungsten crystallise into the
BCC structure.

Note the three types of cubic lattice considered, and the notation used to refer to them:

• Primitive (P): lattice points on the cell corners only.

• Body (I): one additional lattice point at the center of the cell.

• Face (F): one additional lattice point at the center of each of the faces of the cell.

1.5 Order and Disorder in Solids

Not all solids are crystals. The table below outline order and disorder in different kinds of solids.

Crystalline Solids Noncrystalline Solids
Single crystals Amorphous materials (liquids and glasses)
Polycrystalline materials Polymers

Liquid Crystals (nematic, smetic, cholesteric)
Artificial nanostructures

Fractals
Quasi-crystals

The physical properties of solids can also be anisotropic. For example:

• Electrical conductivity

• Elastic properties

• Magnetic response

• Refraction indices

Such anisotropies can lead to behaviour such as biased growth in a particular direction or plane.
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2 Bonding in Solids

• Ionic bonding is the transfer of one or more electrons from one atom to another resulting in positive and
negative ions with filled atomic orbitals. Ionic bonding is not directional and solids bonded in this way
are hard, crystalline materials. Ionic crystalline structures are principally determined by the Coulomb
energy:

φCoulomb(rij) =
QiQj

4πε0rij
(3)

• Covalent bonding involves the ‘sharing’ of unpaired electrons. Atomic wavefunction mix (hybridize)
and lower total energy. It is strong and highly directional.

• Metallic bonding is the extreme limit of covalent bonding. Outermost electrons become free to move
around the crystal creating a ‘sea’ of negative charge binding together positive ions. Metallic bonding is
not directional and is generally weaker which explains why metals tend to be softer and more ductile.

• Hydrogen bonding is a covalent bond between different atomic species in which there is a partial
separation of charge. This charge distribution results in attraction to opposite ends of the covalent bond.
The effect is particularly strong in hydrogen (one electron leads to greater change in charge distribution).
The effect is much weaker than ionic, covalent or metallic bonds. Examples include water molecules in
ice and the two strands of the double helix in DNA.

• Van der Waals bonding is due to quantum fluctuations of electric dipole moments in atoms. The force
between an electric dipole moment on one atom and the moment this induces in another is attractive.
This is described by the Lennard-Jones potential:

φij(rij) = −4ε

[(
σ

rij

)6

−
(
σ

rij

)12
]

(4)

Here σ is the finite distance at which the inter-particle potential is zero, ε is the maximum potential
energy (or depth of the potential well), and rij is the spacing between particles i and j. The force is very
weak and is usually secondary to other bonding types, but it is important in organic molecules, polymers,
noble gases and liquids at low temperature.

3 X-ray Diffraction

3.1 The Bragg Law

For x-rays the wavelength λ is typically 1Å, comparable to the interatomic spacing of solids. This means a
crystal acts as a three dimensional diffraction grating. This is important for the analysis of crystal structures
because it is possible to deduce the size of a unit cell from the separation of diffraction maxima (like line spacing
in a diffraction grating), and relative intensities of different orders allows for analysis of the arrangement of
atoms in the cell.

(a)
(b)

Figure 3: Ray diagrams for x-ray diffracting in a crystal structure.

• The glancing angle θ is used in crystallography rather than the incidence angle. The reflection condition
implies that the x- ray beam is deflected by angle 2θ (Figure 5). Note also that we consider scattering
concerned with lattice points, not atoms, because it is the basis of atoms associated with each atom that
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(a) The experimental set up for a Laue photograph.

(b) The photographic result of polychromatic diffraction.

Figure 4: The Laue method.

is the true repeat crystal; the lattice point is the analogue of the line on an optical diffraction grating,
the basis represents the structure of the line.

• In order to achieve a diffraction maximum, successive planes should scatter in phase. This will be the
case if the path difference for scattering of two adjacent planes is an integral number of wavelengths, and
from Figure 3a we see that:

2d sin θ = nλ n ∈ Z (5)

where d is the plane spacing defined in equation 2. This is Bragg’s law.

• Rewriting this law as in equation 6 demonstrates that the nth order diffraction off (hk l) planes of spacing
d look like first order diffraction of spacing d/n. Planes of this reduced spacing would have Miller indices
(nh nk nl).

2(d/n) sin θ = λ (6)

• Bragg used an arrangement like an ordinary spectrometer and measured intensity in reflection from the
cleaved face of a crystal, finding six values of θ for which sharp peaks of intensity occurred, corresponding
to three characteristic wavelengths (K, L and M x-rays) in first and second order. By repeating such an
experiment for different faces, ratios can be found between planar spacings, and the symmetry of a crystal
can be confirmed.

3.2 Experimental Arrangements

• Most experiments involve accelerating electrons through a potential difference of order 30keV and colliding
them with a metal target to produce x-rays. The x-ray emission is then a mix of the characteristic lines
(K, L, M etc.) of the metal and a background which varies with wavelength. By changing the voltage
almost monochromatic or a broadened white spectrum can be achieved.

• If a higher intensity source is required, charged particles can be accelerated (so that they become a source
of electromagnetic radiation) in a synchrotron. Synchrotrons are used for the determination of structure
in very small crystals and crystals containing biological molecules where unit cells are complex.

• One common type of measurement of diffraction in a crystal is a Laue photograph, in which a single
crystal is illuminated with collimated beam of ‘white’ x-rays (Figure 4a). Each set of crystal planes
will satisfy the Bragg condition (equation 5) for some wavelength. The resulting diffracted beam creates
a pattern of spots on a photographic film (Figure 4b). The symmetry of the spot pattern reflects the
symmetry of the crystal when crystal when viewed along the direction of the incident beam. The Laue
method is often used to determine the orientation of single crystals that to not have well developed
external faces.

6



(a) The photographic result from the rotating crystal
method.

(b) Powder photograph.

Figure 5: Diffraction from monochromatic beams.

• When a single crystal is exposed to a collimated monochromatic beam, as in the rotating crystal
method, there is generally no diffraction as no set of lattice planes satisfy Bragg’s law. When the crystal
is rotated around a fixed axis perpendicular to the x-ray beam, the glancing angle θ varies for sets of
planes that are not perpendicular to the rotation axis. A set of such planes is likely to satisfy the Bragg
condition for some θ. The crystal is surrounded by a photographic film and the resulting pattern of
diffraction spots (Figure 5a) can be analysed to obtain structure.

• Instead of rotating the crystal, a powder photograph (Figure 5b), in which many randomly oriented
grains are glued together to form a sample, can be taken. This works because some grains will be oriented
with Bragg angle θ to the incident rays. Structure can be determined from the measured values of θ and
the relative intensities.

3.3 Selection Rules

To analyse the structure of crystals we note that the Bragg law can only be applied to a lattice when the plane
is correctly oriented with respect to the x-ray beam. In the cubic case, while for the primitive case the Bragg
law is simple, in other lattice structures extra atoms cause out of phase scattering at particular angles giving
rise to selection rules. We can see this by writing the distance between planes in a cubic lattice of side length
a as:

d =
a√

h2 + k2 + l2
(7)

and combining this with Bragg’s law (equation 5) to get:(
λ

2a

)2

=
sin2 θ

h2 + k2 + l2
(8)

Equation 8 can be used to derive the selection rules for h, k, and l in P, I, F cubic lattices. These are as
follows:

• SC (P): no constraint (simple)

• BCC (I): (h+ k + l) is even (body centred)

• FCC (F): h, k, l are all even or all odd (face centred)

3.4 The Reciprocal Lattice

For this section, we denote wave number of an incident x-ray k and the wavenumber of the diffracted ray k′. In
diffraction we assume elastic scattering so that |k| = |k′| = 2π/λ where λ does not change (for spectroscopy λ
changes). We denote ~Q = ~(k′−k) the change in momentum of incident particles. For a maximum amplitude
we can find |Q| = Q in terms of the planar separation d:

Q2 = |k′ − k|2 = k′2 + k2 − 2k′ · k (9)

Which we can rewrite with the magnitudes of k and k′:

Q2 = 2

(
2π

λ

)2

− 2

(
2π

λ

)2

cos 2θ (10)
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(a) The vector Q = k′ − k

(b) A vector diagram with the reciprocal lattice vector
shown.

Figure 6: Vectors involved in the diffraction of beams.

And simplify to:

Q =
4π sin θ

λ
=

2π

d
(11)

Furthermore, defining the lattice points as in equation 1 it can be shown that the directions of diffracted
beams are given by a set of vectors Q which satisfy the conditions:

Q · a = 2πh Q · b = 2πk Q · c = 2πl (12)

which are known as the Laue conditions.
These can be expressed neatly by developing the concept of a reciprocal lattice on which the vectors Q

which satisfy the Laue conditions lie on the lattice points. All points on the reciprocal lattice are generated
from the primitive vectors a∗, b∗ and c∗ by:

Ghkl = ha∗ + kb∗ + lc∗ (13)

and linking reciprocal primitive vectors to the originals with the following transformation:

a∗ =
2π

Vc
b× c b∗ =

2π

Vc
c× a c∗ =

2π

Vc
a× b (14)

where Vc = a · b× c is the cell volume.
Note that in crystals with orthogonal axes the reciprocal lattice vectors are parallel to the corresponding

lattice vectors:

a∗ =
2π

a
b∗ =

2π

b
c∗ =

2π

c
Vc = abc (15)

With the reciprocal lattice defined, it can be shown that the Laue conditions now become:

Q = Ghkl (16)

from which it also follows that:

Ghkl · k =
1

2
G2
hkl (17)

3.5 Diffraction Intensity

The total intensity of a diffracted beam at any point is a product of the Fourier transforms of contributions
due to lattice points (as addressed in the reciprocal lattice), and due to atoms in the basis. This latter term
incorporates the structure of the unit cell, the atomic form factor (dependent on electrons in the atoms), and
thermal motivation which is the Debye-Walker factor.

• Intensity I of diffraction from the lattice plane with Miller indices (h k l) is:

Ihkl = |Shkl|2δ(Q−Ghkl) (18)
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(a) The construction of Brillouin zones by bisecting distances
between points in a reciprocal lattice.

(b) A vector which travels across three bisecting lines, and
hence reaches the fourth Brillouin zone.

Figure 7: Brillouin zones.

• The structure factor is
Shkl =

∑
j

fj(Ghkl)e
2πi(hxj+kyj+lzj) (19)

for which fj(Ghkl) is the atomic form factor of atom j. The delta function reflects the Laue conditions.
The sum runs over all atoms in the unit cell, and (xj , yj , zj) are the fractional coordinates of the jth atom
in the cell.

3.6 Brillouin Zones

Brillouin zones arise from the natural splitting of regions in a lattice by the effect of a periodic potential on
electron states.

• They are the Wigner-Seitz unit cells in reciprocal space.

• Their boundaries represent Bragg planes which diffract waves having particular wave vectors.

• Each zone has the same volume (or area in 2D).

• The first Brillouin zone is the set of points closer to the origin in reciprocal space than any other reciprocal
lattice point.

• All the physics of a system is contained within a Brillouin zone. For any point outside the first zone there
exists a unique reciprocal lattice vector that will translate that point back inside the first zone.

• Some examples for cubic lattices: consider the reciprocal lattice of a SC (still a SC), then the first
Brillouin zone is also a cube. For a BCC structure, the reciprocal lattice is FCC and therefore has a
rhombic dodecahedron as its first Brillouin zone. FCC has a BCC reciprocal and therefore a truncated
octahedron is its first zone.

4 Crystal Dynamics

The idea of a crystal as a regular arrangement of stationary atoms cannot be correct as it violates Heisenberg
uncertainty principle. Therefore at a temperature of absolute zero atoms must vibrate around their equilibrium
positions with zero point energy. We now consider the nature of atomic motions in crystals, known as lattice
vibrations.
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4.1 Lattice Vibrations of 1D Crystals

Consider a longitudinal (e.g. sound) wave propagating in a one dimensional crystal.

• In the linear chain model we consider identical atoms, mass m, separation distance a, oscillating in a
chain. In this case the dispersion relation is

ω = 2

√
C

m

∣∣∣∣sin ka2
∣∣∣∣ (20)

with k wavenumber, C force constant. From this we see that in the long wave limit wave sound velocity
is independent of frequency. The group velocity is:

∂ω

∂k
(k → 0) = a

√
C

M
(21)

At the boundaries of a Brillouin zone (k = ±π/a) the solution to the equation of motion gives a standing
wave (i.e. group velocity is zero).

• If we consider similar lattice vibrations with atoms of two different masses M and m in the diatomic
chain model we find a new dispersion relation:

ω2 = C
M +m

Mm
±

{(
M +m

Mm

)2

− 4

Mm
sin2

(
ka

2

)}1/2

(22)

which has two solutions for each k, the acoustic (-) and the optic (+) branches. The two masses will also
oscillate with different amplitudes, the ratio between them is:

α =
2C − ω2M

2C cos
(
ka
2

) (23)

This is the simplest model for (for example) an ionic crystal.

• The number of branches in solutions to the dispersion relation is given by the number of atoms in a
primitive cell times the number of dimensions they are free to oscillate in. For example, a 3D crystal made
of N primitive cells each containing p atoms will have 3pN degrees of freedom and 3p branches. Each
individual branch will have N allowed k-values. Their will be one acoustic branch for each dimension,
and the rest will be optic branches. For acoustic branches, frequency goes to zero with wavevector.

4.2 Phonons

• We now consider the vibrational system quantum mechanically by supposing the lattice vibration mode
of frequency ω will behave like a simple harmonic oscillator, and will thus be restricted to energy values:

εn =

(
n+

1

2

)
~ω (24)

• The energy of a normal vibrational mode can be written:

E(k) =

(
n(k) +

1

2

)
~ω(k) (25)

where n(k) is the number of quanta in the mode with wavevector k.

• A phonon is a quanta of vibrational energy, and adding more phonons is equivalent to increasing the
amplitude of atomic vibrations.

• The number of phonons n(k) with a particular frequency is determined by the temperature T when a
solid is in thermal equilibrium:

n(k) = (e
~ω

kBT − 1)−1 (26)

• Phonons distribution, the Plank distribution law, is a special form of the Bose-Einstein distribution
function. Phonons are boson quasiparticles.

• Phonons act as if they have a momentum p = ~k, but this is not a true kinematic momentum because:
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– for all k-values (except k = 0) the centre of mass of a crystal does not move when a phonon is
excited.

– the phonon wavevector is not single-valued; k′ = Ghkl + k represents the vibrational mode equally
well.

• The density of states g(ω) is defined such that g(ω) dω = pg(k) dk is the number of vibrational modes
between ω and ω + dω. Here p is the number of degenerate modes per k-state.

• In 1D, applying periodic boundary conditions gives the allowed wavenumbers:

k =
2πm

Na
=

2πm

L
(27)

where m is an integer and L is the length of the lattice. The allowed states are uniformly distributed in
k-space and are separated in each direction by 2π/L.

– In 1D g(k) dk = (L/2π)2 dk

– In 2D g(k) dk = (L/2π)22πk dk

– In 3D g(k) dk = (L/2π)34πk2 dk

4.3 Lattice Heat Capacity

• Lattice heat capacity is defined by Clat = ∂Ulat

∂T where Ulat is the thermal average lattice vibrational
energy.

• n the Einstein model all modes have the same frequency ω. The heat capacity is then given by:

C =
2NkBT exp(θ/T )

(exp(θ/T )− 1)2

(
θ

T

)2

(28)

where θ = ~ω/kB . This gives a high temperature limit C ≈ 3NkB and low temperature limit C → 0
(exponentially).

• In the Debye model dispersion is isotropic, linear, and extends up to the Debye frequency ωD, determined
by the condition

3N =

∫ ωD

0

g(ω) dω. (29)

The heat capacity is then given by:

C = 9NkB

(
T

θD

)3 ∫ θD/T

0

y4ey

(ey − 1)2
dy (30)

wherey = ~ω/kB and θD is the Debye temperature:

θD =
~ωD
kB

(31)

In the high temperature limit, for (T >> θD), then again C ≈ 3NkB . However in the low temperature
limit (T << θD), the upper limit of the integral tends towards infinity and the integral evaluates to a

constant. We are left with a cube law: C ≈ 12
5 NkBπ

4
(
T
θD

)3
.

5 Introduction to Neutron Scattering

Properties of neutrons:

• Mass: 1.67× 10−27kg

• Charge: 0

• Spin: 1/2

• Magnetic Moment: −1.9µN
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5.1 Motivation for Using Neutrons

• Their wavelength is similar to atomic spacing, so diffraction measurements can be obtained.

• Energy is the same order of magnitude to the diffuse motion in solids/liquids and the coherent waves in
crystals, so spectroscopy measurements can be obtained.

• Highly penetrating, bulk samples can be analysed.

• Non-destructive, so delicate samples can be studied.

• The magnetic scattering cross section is similar in magnitude to the nuclear cross section, so magnetic
diffraction measurements can be made, and inelastic magnetic scattering probes magnetic dynamics.

• Polarized neutrons can distinguish magnetic and nuclear scattering and a specific spin component.

5.2 Neutron Sources

Neutron sources include nuclear reactors, in which fission is just nuclear decay induced by collisions with
neutrons. During decay, large nuclei emit more neutrons etc.

Another source is spallation in which negatively charged hydrogen ions are accelerated to very high energies.
It is then passed through a foil, which strips off each ion’s two electrons, converting it to a proton. The protons
pass into a ring where they accumulate in bunches. Each bunch of protons is released from the ring as a
pulse. The high energy proton pulses strike a heavy-metal target, which is a container of liquid mercury.
Corresponding pulses of neutrons freed by the spallation process are slowed down in a moderator and guided
through beam lines to areas containing highly specialized instruments for conducting experiments. Once there,
neutrons of different energies are used in a wide variety of experiments.

6 Exercises

1. Find the ideal packing fraction for SCC, HCP, BCC, FCC structures.

2. Consider a cubic lattice with a conventional choice of unit cell.

• Sketch the lattice planes (1 1 1), (1 0 2), and (1 1 0)

• Calculate plane spacing for planes listed above if the lattice parameter a = 2.87Å

• What direction is the line of intersection of (1 1 1) and (1 0 2)

3. Explain the significance of different quantities for Van der Waals bonding, both on the potential graph
and in the equation.

4. Calculate Shkl for BCC and FCC lattices. Hint: use selection rules.
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