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1 Statistical Mechanics and Microcanonical Ensembles

1.1 Probability Refresher

Let X be a random variable and P (X = x) the probability of X taking a value x upon measurement. The
total probability over all possible values of x must sum up to one, so for discrete number of possible values∑

i

P (X = xi) = 1

this is also called the normalization of the distribution P .
For continuous range of possible values R(X)∫

R(X)

P (X = x)dx = 1

The mean is defined as
< x >=

∑
i

xiP (X = xi)

for discrete range and

< x >=

∫
R(X)

xP (X = x)dx

for continuous range. The variance is defined as the mean square distance from possible values of X from
the mean, i.e.

V ar(X) =
∑
i

(xi− < x >)2P (X = xi)

for discrete range and

V ar(X) =

∫
R(X)

(x− < x >)2P (X = x)dx

for continuous range.
Also, for the mean of a function of a random variable f(x), we have

< f(x) >=
∑
i

f(xi)P (f(X) = f(xi)) =
∑
i

f(xi)P (X = xi)

or, for continuous case

< f(x) >=

∫
R(X)

f(x)P (X = x)dx

Therefore, we can rewrite the variance relation as

V ar(x) =
∑
i

(xi− < x >)2P (X = xi) =

=
∑
i

x2
iP (X = xi)− 2 < x >

∑
i

xiP (X = xi)+ < x >2
∑
i

P (X = xi)

Using the definition of mean and normalization, we have

V ar(x) =< x2 > −2 < x >2 + < x >2=< x2 > − < x >2

The standard deviation is defined as

σx =
√
V ar(x) =

√
< x2 > − < x >2

and it is the measure of the spread of distribution P in the direction of x.
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1.1.1 Bernoulli Trial

Consider that the measurement of X can result only in two possible values - 0 with probability P (X = 0) = q
(sometimes nicknamed failure) and 1 with probability P (X = 1) = p (success).
Therefore, the distribution is discrete and has following parameters

p+ q = 1, < x >= 1p+ 0q = p,< x2 >= 12p+ 02q = p, σx =
√
p− p2 =

√
p(1− p) =

√
pq

This form of random variable is called the Bernoulli trial. Now, consider that we perform the trial inde-
pendently n times in a row. Independently means that one trial does not influence the other in any way.
Then, the probability of k trials resulting in a ”success” is

P (n, k) =

(
n
k

)
pkqn−k

as the trials are perfectly symmetrical and we need to account for interchanging them. This is also a
distribution, of a new variable Bn which goes from 0 to n and is called the binomial distribution. It has
following properties

< k >= np,< k2 >= np(np+ q), σk =
√
npq

Hence, the fractional standard deviation is

σk
< k >

=

√
q

np

which decreases as the n increases. Therefore, the distribution becomes relatively narrower as we increase
n.

1.1.2 Conditional Probability

The probability of event A happening (event A being a set of values of X that satisfy certain condition) if
we know that event B has happened is

P (A|B) =
P (A ∩B)

P (B)

where P (A ∩ B) is the probability of A and B both happening simultaneously and P (B) is probability of
B happening.
For independent events, it makes sense that P (A|B) = P (A), which leads to

P (A ∩B) = P (A)P (B)

Also, for independent events, the outcomes are different, hence A ∩B = ∅.
For either of two events happening, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B)

And thus for independent events, P (A ∪B) = P (A) + P (B).

1.1.3 Bayes’ Theorem

Consider two events, A and B. These events can be partitioned into sets that do not intersect and are thus
independent new events as

A = (A ∩B) ∪ (A ∩B′)

where S′ denotes the complement of set S on some set that includes all possible outcomes. As an event
can either occur or not occur, we must have

P (S′) + P (S) = 1

Hence
P (S′) = 1− P (S)

Since the events A ∩B and (A ∩B′) do not share any element, they are independent and thus

P (A) = P (A ∩B) + P ((A ∩B′)) = P (A|B)P (B) + P (A|B′)P (B′) = P (A|B)P (B) + P (A|B′)(1− P (B))

4
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Similarly, we could transform

P (B) = P (B|A)P (A) + P (B|A′)(1− P (A))

Thus, we can say that probability of B given that A happened is

P (B|A) =
P (A ∩B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|B′)(1− P (B))

This is called the Bayes’ theorem, and enables us to find probabilities with exchanged causality direction.

1.2 Classical Laws of Thermodynamics

Classical laws of thermodynamics in the differential form are as follows. The first law is

dU = TdS − pdV (1)

where dU is the small change in the internal energy of the system, T is the temperature of the system, dS
is the small change in the entropy of the system, p is the pressure in the system and dV is the small change
in volume of the system.
The second law is

dS ≥ 0 (2)

The third law is
lim
T→0

S = 0 (3)

and applies even inversly
lim
S→0

T = 0

The classical thermodynamics tries to make prediction about the system given that it is in thermal equilib-
rium, but it needs additional definition for this equilibrium (which is the zeroth law of thermodynamics).
It usually uses somewhat empirical equations of state to derive system’s behaviour, but these equations of
state themselves are not derivable using just the thermodynamics methods.
These were some of the reasons why statistical mechanics were developed. Statistical mechanics can derive
a reasonable definition of both entropy and thermal equilibrium, and can be used to derive equations of
state only from considering the energies of possible states of the system.
The importance of statistical mechanics is further amplified by the fact that it can be used in quantum
predictions, as the nature of statistical mechanics is probabilistic.

1.3 Microstates and Macrostates

In statistical mechanics, we usually model the system as a collection of smaller systems which change
their states. Then, the ordered set of states for each specific component of the system would be called
a microstate of the system. But, we are hardly ever able to measure the properties of each component
system. Usually, we can measure only some bulk properties that are created by all the component systems
together. Then, all microstates that would lead to the measurement of the same value of the given bulk
property are called the macrostate of the system. For big systems, each macrostate corresponds to very big
number of possible microstates.
In this module, and in statistical mechanics in general, we are most interested in the macrostates of energy,
i.e. the collections of microstates that produce the same overall value of energy of the system.

2 Foundations of Statistical Mechanics

The theory of statistical mechanics is build on several assumptions/laws. First is the definition of thermal
equilibrium. The thermal equilibrium occurs if each of the microstates of the system is equally likely.
The second assumption is that the dynamics of the system are such that the microstate of the system is
constantly changing.
Final assumption is that if given enough time, the system in thermal equilibrium will at least for some time
be in each possible microstate and that the time spent in these microstates is on average equal.
The last assumption is also called the ergodic hypothesis.
The combined consequence of these assumptions is that the macrostate of the system that is represented
by more microstates tends to be more probable than one that is represented by less microstates.
In statistical mechanics, three system compositions/situations are usually considered

5
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1. Microcanonical Ensembles

• Microcanonical ensemble is a set of systems, each of which is isolated from each other

2. Canonical Ensemble

• Canonical ensemble is a set of systems, each of which can exchange the energy, but not the
particles (microstate positions) with some very big reservoir.

3. Grand-Canonical Ensemble

• Grand-Canonical ensemble is a set of systems that can exchange both energy and particles with
a very big reservoir.

2.1 Microcanonical Ensemble

Say that we have three identical quantum harmonical oscillators with natural frequency ω0. Suppose that
we are interested in a macrostate when the total energy of this system is 5

2 h̄ω0. As energy of each oscillator
is Eo = h̄ω0

(
n+ 1

2

)
, this means that there is energy h̄ω0 that either of the oscillators can have. Therefore,

there is a total of three possible microstates - each for one oscillator having energy 3
2 h̄ω0 and the rest having

energy 1
2 h̄ω0.

For the general energy
(
n+ 3

2

)
h̄ω0 in the system, we then distribute n h̄ω0 energy packets between the

three systems. This is identical as permutating 2 system separations and n of these bundles. The total
number of microstates corresponding to this is

Ω =
(n+ 2)!

n!2!
=

(
n+ 2

2

)
where n! = n× (n− 1)× ...× 2× 1 is the factorial operation. Therefore

Ω =
(n+ 2)(n+ 1)

2

Say that we fix the energy as n = 5, so Ω = 21. Then, we can define a different macrostates of the system,
each corresponding to a different number of oscillators in the ground state. Clearly, the maximum value
of this variable is 2, the minimum is 0. But, what are the corresponding numbers of microstates? For 0
oscillators in ground states, we need each oscillator to have at least one energy bundle. Therefore, we are
left with n − 3 = 5 − 3 = 2 energy bundles that can freely be changed between the three oscillators. The
number of microstates is therefore

Ω0 =
((n− 3) + 2)!

(n− 3)!2!
=

4!

4
= 6

Now, consider the case when one oscillator is in a ground state. This means that two energy bundles are
reserved for the other oscillators. Therefore, for one specific oscillator at a ground state, there is

Ω1,1 =
((n− 2) + 1)!

(n− 2)!1!
=

4!

3!
= 4

microstates for the other two oscillators. But, since it does not matter which oscillator is at the ground
state, the total number of microstates corresponding to this setup is

Ω1 = 3× Ω1,1 = 12

Finally, for the case of two oscillators in a ground state, there is only one microstate for each oscillator (all
energy left is stored in the one remaining oscillator), and therefore

Ω2 = 3

Therefore, if this system was in thermal equilibrium, we would expect that the most probable state would
be for 1 oscillator to be in a ground state, with the probability of 12

21 .
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2.2 Entropy & Temperature

In thermal equilibrium, we use Boltzmann’s definition of entropy

S = kB ln Ω (4)

where Ω is the number of microstates for a given macrostate of entropy and kB is the Boltzmann constant,
kB ≈ 1.38× 10−23 J K−1.
From this definition of entropy, it is also clear why the second law of thermodynamics (system reaches the
state of maximum entropy, dS ≥ 0) corresponds to the statistic mechanical rule that the system adopts
the macrostate with biggest number of microstates - bigger number of microstates corresponds to bigger
entropy.
Consider now two isolated systems, one with total number of microstates Ω1, the other with number of
microstates Ω2. What is the number of microstates of the combined system? For each microstate in
system 2, there is Ω1 microstates in system 1, and vice-versa (since the systems can change the microstates
independently). Therefore, the total number of the microstates of the combined system is

Ω = Ω1 × Ω2

Hence the total entropy of the combined system is

S = kB ln Ω = kB ln(Ω1 × Ω2) = kB ln Ω1 + kB ln Ω2 = S1 + S2

Thus, for independent systems, the entropy is additive.

2.2.1 Free Expansion

Consider a gas in volume V0 that is free to expand into another empty volume V0, so that the total volume
after expansion is 2V0. What is the change in entropy? For each microstate in the original gas, there is
now 2N microstates in the expanded state, as each of the particles can have exactly the same position and
momenutum, but in the second volume instead of the first. Thus, the number of microstates after expansion
is Ω0 × 2N , where Ω0 is the original number of microstates. Therefore, the change in entropy is

∆S = kB ln
(
Ω0 × 2N

)
− kB ln Ω0 = kB ln 2N = NkB ln 2

2.2.2 Definition of Temperature

Now, consider two systems that can exchange energy. Lets say we are measuring the energy macrostate.
What is the total number of microstates, corresponding to some total energy E? Let the energy of the first
system be E1 and the energy of the second system E2. Hence E = E2 +E1, and more importantly for fixed
E

0 = dE2 + dE1

dE1 = −dE2

which just means that all energy lost from system two must be gained by system 1.
On the example of the harmonic oscillators, we have seen that the number of accesible microstates depends
on the energy available to the system. Therefore, we can write the number of microstates available in
system 1 as

Ω1 = Ω1(E1)

and similarly
Ω2 = Ω2(E2)

The total number of the microstates of the two system is then

Ω = Ω(E1)Ω(E2)

Since we can determine E2 from E1 (E2 = E − E1), to find the maximum of this number (which will
correspond to the most probable energy macrostate between these two systems) occurs at

dΩ

dE1
= 0

7
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This means that

0 =
dΩ1Ω2

dE1
= Ω1

dΩ2

dE1
+ Ω2

dΩ1

dE1
= Ω1

dE2

dE1

dΩ2

dE2
+ Ω2

dΩ1

dE1
= Ω2

dΩ1

dE1
− Ω1

dΩ2

dE2

Therefore, at thermal equilibrium

Ω1
dΩ2

dE2
= Ω2

dΩ1

dE1

1

Ω2

dΩ2

dE2
=

1

Ω

dΩ1

dE1
(5)

Therefore, for a system at thermal equilibrium with its surroundings

1

Ω

dΩ

dE
= β

where β is some constant shared by all systems in equilibrium with the same surroundings. This can be
rewritten as

β =
d ln Ω

dE
=

1

kB

dkB ln Ω

dE
=

1

kB

dS

dE

In classical thermodynamics, systems at thermal equilibrium have a common temperature. If we want to
define temperature in statistical mechanics so that it behaves in the same way as in classical mechanics,
we need to consult the first law of thermodynamics in this context. We know that the systems considered
here are fixed in volume (otherwise Ω would depend on the volume of the system as well), hence the first
law states

1

T
=

(
∂S

∂U

)
V

For our case, since the S is a function of U = E only and V is always fixed, we can write

1

T
=
dS

dE

By comparison with the previous result for C, we find that

β =
1

kBT

And thus, we have our definition of temperature in statistical mechanics, that is defined so that it reduces
to classical temperature in classical thermodynamics. The definition is

1

kBT
=
d ln Ω

dE
(6)

We quite often refer to the constant β directly, instead of reffering to temperature.

2.2.3 Measuring Entropy

Generally speaking, entropy is very hard to measure. Classically, we have relation

dU = TdS

at fixed volume. We can measure
dU = CV dT

where CV is the heat capacity at fixed volume. Therefore

CV dT = TdS

Therefore, the change in entropy (but not its absolute value) can be found as

∆S =

∫ T2

T1

CV
T
dT

8
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2.2.4 Gibbs Entropy Formula

Gibbs entropy formula defines entropy even for systems out of equilibrium as

S = −kB
∑
i

Pi lnPi (7)

where sum runs over all the microstates of the system and Pi is the probability of the system existing in a
given microstate. In a thermal equilibrium,

Pi =
1

Ω

and thus

S = −kB
∑
i

1

Ω
ln

(
1

Ω

)
= −kB

1

Ω
ln

(
1

Ω

)∑
i

1

Since the sum runs over all microstates

S = −kB
1

Ω
ln

(
1

Ω

)
Ω = −kB(− ln Ω) = kB ln Ω

Therefore we see that the Gibbs entropy formula reduces to the Boltzmann entropy formula for systems in
equilibrium.

3 Canonical Ensembles

Lets have a collection of systems of fixed number of particles N and fixed volume V . Then, let this ensemble
of systems be in a contact with a large reservoir with energy E − Ei, where Ei is the energy of the ith
macrostate of the ensemble (so that the total energy is U = E − Ei + Ei = E).
Now, lets have the system in a thermal equilibrium with the reservoir, where T (and/or β) is fixed both
for the ensemble and the reservoir. The ensemble in this state and setup is called the canonical ensemble.
Now, we are interested in the probability that the ensemble has energy Ei.
The total number of microstates for both the reservoir and the ensemble is

Ω = Ωe(Ei)Ωr(E − Ei)

where Ωe is the number of microstates of the ensemble and Ωr is the number of microstates of the reservoir.
The probability of system having energy Ei is then a function of this total number of microstates. Since
the reservoir has energy E relatively big and a very big number of possible places for the energy, we can
approximate

P (Ei) ∝ Ω(E − Ei)

So
P (Ei) = CΩ(E − Ei)

where C is some constant.
To find Ω(E − Ei), consider a Taylor expansion of ln Ω(E − Ei)

ln Ω(E − Ei) ≈ ln Ω(E)− d ln Ω(E)

dE
Ei

But, from our definition of temperature
d ln Ω(E)

dE
= β

Hence
ln Ω(E − Ei) ≈ ln Ω(E)− βEi = ln

(
Ω(E)e−βEi

)
Dropping the approximation sign

Ω(E − Ei) = Ω(E)e−βEi

Hence, the probability of system having energy Ei is

P (Ei) = CΩ(E)e−βEi

9
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Since CΩ(E) do not depend on the energy of the system Ei, we write them together as a constant 1
Z so

P (Ei) =
e−βEi

Z
(8)

This is called the Boltzmann distribution, and constant Z is called the partition function.
Since the system has to have some energy (zero energy is still a state, only with Ei = 0), the overall
probability of system having some energy must be equal to 1, i.e.∑

i

P (Ei) = 1

Which means that ∑
i

e−βEi

Z
= 1

and therefore
Z =

∑
i

e−βEi (9)

and thus we have our definition of partition function.

3.1 Two State system

Consider now a system that can exist in tow states of energies - either it has energy ε or energy 0. The
partition function for this system is

Z = e−β0 + e−βε = 1 + e−βε

And thus the Boltzmann distribution is

P (E) =
e−βE

1 + e−βε

The expectation value for the energy of the system is

< E >= P (E = 0)× 0 + P (E = ε)ε =
εe−βε

1 + e−βε
=

ε

1 + eβε

Therefore as T →∞ (and β → 0), < E >→ ε
2 , which makes sense (the system changes swiftly from energy

0 to ε and back). Also, as T → 0, β →∞, < E >→ 0, which is also reasonable.
Here, we calculated for the expectation value of < E >. Because the reservoir is constantly changing its
microstates, we can assume that the observed value of total energy U will be simply

U =< E >

We could then also calculate the heat capacity

CV =
∂U

∂T
=

d

dT

ε

1 + eβε
=
dβ

dT

d

dβ

ε

1 + eβε
= − 1

kBT 2
ε

(
− 1

(1 + eβε)2
eβεε

)
= kBβ

2

(
ε

1 + eβε

)2

eβε

This can be rewritten in terms of hyperbolic functions as

CV = kBβ
2ε2eβε

 1

e
βε
2

(
e
βε
2 + e−

βε
2

)
2

= kBβ
2ε2

eβε

eβε
1

4 cosh2
(
βε
2

) =
kBβ

2ε2

4 cosh2
(
βε
2

)
Since β2 initially increases faster than cosh

(
βε
2

)
, there exists a peak of maximum heat capacity. This is

called the Schottky anomaly.

10
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3.2 Equipartition Theorem

Equipartition theorem states that for system where energy states are near continuous (which is usually close
to the high temperature classical limit of thermodynamics) and where the energy of the states depends on
a square of some variable taking any value from −∞ to∞, the average energy of the system is independent
of the specific state and only depends on the temperature.
For example, imagine a classical monatomic gas. Each molecule in such gas has only the kinetic energy,
which is

T =
1

2
m(v2

x + v2
y + v2

z)

where m is the mass of the atom of the gas and vx/y/z are the different components of speed, each of which
can go from −∞ to ∞.
Similarly, the potential energy of a harmonic oscillator in 1D goes as

V =
1

2
kx2

where k is the spring constant and x is the displacement from the equilibrium position, again going from
−∞ to ∞.
Therefore, we see that setup of the equipartition theorem is quite a common situation. Now, we need to
employ the methods of statistical mechanics to progress.
Lets say that the energy of a part of the system depends on n independent variables as

E = α1x
2
1 + α2x

2
2 + ...+ αnx

2
n

Therefore, the partition function is obtained by summing together values for each possible value of each
variable, which can be achieved by integral

Z =

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞

e−β
∑n
i=1 αix

2
i dx1dx2...dxn

The exponential function can be split into products as

Z =

∫ ∞
−∞

...

∫ ∞
−∞

n∏
i=1

e−βαix
2
i dx1...dxn

This means that the integral can be factorised as

Z =

n∏
i=1

∫ ∞
−∞

e−βαix
2
i dxi

Now, we can solve just the one integral as

Ii =

∫ ∞
−∞

e−βαix
2
i dxi

Substituting yi =
√
βαixi

Ii =
1√
βαi

∫ ∞
−∞

e−y
2
i dyi

I2
i =

1

βαi

∫ ∞
−∞

e−y
2
i dyi

∫ ∞
−∞

e−z
2
i dzi =

1

βαi

∫ ∞
−∞

∫ ∞
−∞

e−(y2
i+z2

i )dyidzi

Changing the coordinates to planar polar

I2
i =

1

βαi

∫ ∞
0

∫ 2π

0

e−r
2
i ridφidri =

2π

βαi

∫ ∞
0

rie
−r2

i dri =
2π

βαi

[
−1

2
e−r

2
i

]∞
0

=
π

βαi

Therefore

Ii =

√
π

βαi

Therefore

Z =

n∏
i=1

√
π

βαi
=

(
π

β

)n
2

n∏
i=1

1
√
αi

(10)

11
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The probability of system being in an energy state with energy E as defined above is then given by
Boltzmann distribution

P (E) =
e−βE

Z
=
e−β

∑n
i=1 αix

2
i

Z
=

∏n
i=1 e

−βαix2
i

Z

And the total energy of the system (which is the expectation value of the energy - the mean of energy) is
then

U =

∫ ∞
−∞

...

∫ ∞
−∞

EP (E)dx1...dxn =

∫ ∞
−∞

...

∫ ∞
−∞

 n∑
j=1

αjx
2
j

 1

Z

n∏
i=1

e−βα
2
i dx1...dxn

Each of the αjx
2
j terms in the sum is only integrated in one integral, and therefore we can factorize the

integral as

U =
1

Z

n∑
j=1

∫ ∞
−∞

αjx
2
je
−βαjx2

jdxj

n∏
i=1,i6=j

∫ ∞
−∞

e−βαix
2
i dxi

We have already done the second integral, but we have to do the first one.

Ji =

∫ ∞
−∞

αix
2
i e
−βαix2

i dxi = αi

∫ ∞
−∞

xi

(
xie
−βαix2

i

)
dxi =

= αi

[
xi

(
− 1

2βαi
e−βαix

2
i

)]∞
−∞

+
1

2β

∫ ∞
−∞

e−βαix
2
i dxi

We can see that the bracketed term goes to zero, as e−βαix
2
i goes to zero much faster than xi diverges. The

second integral we already calculated as Ii, so we are left with

Ji =
1

2β

√
π

βαi

Therefore, we have

U =
1

Z

n∑
j=1

1

2β

√
π

βαj

n∏
i=1,i6=j

√
π

βαi
=

1

2βZ

n∑
j=1

n∏
i=1

√
π

βαi
=

n

2βZ

n∏
i=1

√
π

βαi

We can see that the last product expression is nothing else but the partition function Z, and therefore

U =
n

2βZ
Z =

n

2β
=
n

2
kBT (11)

This is a major result, because we discovered that the total energy of the system does not depend on the
exact nature of the energy (we do not need to know each αi to determine the energy of the system).
Therefore, we can make some predictions about the total energy of the system without the exact knowledge
of the system.
It should be noted that for a system of N , particles, each of which has n quadratic energy terms, there is
total of Nn quadratic energy terms for the whole system, and thus

U = N
n

2
kBT

and therefore we see that this total energy is classicaly extensive.
It should be noted however that Z is not a proper partition function, as it has dimensions - a proper
partition function needs to be dimensionless. This is particularly seen when trying to calculate other values
from this partition function (see later).

3.2.1 Gases

Gases can usually quite well fulfill the assumptions of equipartition theorem (there is almost no interaction
between the molecules/atoms of the gas, and the kinetic energy is quadratic with velocity). For monatomic
gas, we expect three quadratic energy modes (translation in three different directions), and therefore we
expect energy 3

2kBT per particle of the gas. Hence, the molar heat capacity of monatomic gas is expected
to be (at constant volume)

CV = NA
3

2
kB =

3

2
R

12
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where R = 8.314 J mol−1K−1 is the molar gas constant.
For diatomic gas, we also expect additional two vibrational modes (velocity and potential vibrational
energies) and three rotational modes. But, the rotational motion around the axis of the molecule is forbidden
for reasons from quantum mechanics, and the vibrational modes only start to excite at about 4000 K
(because the ground state energy of the oscillations is otherwise lower than the energy from equipartition).
Similarly, the rotation around the centre of the molecule only becomes available above about 250 K.
Therefore, for less than 250 K, the molar heat capacity of diatomic gas is 3

2R, for 250 - 4000 K, the molar
heat capacity is 5

2kBT (the two additional rotational modes are available) and after that 7
2kBT (vibrational

modes).
For gases with more atoms, the vibrational modes are again supressed, but from the turn on point three
rotational modes are available, so for common range of temperatures, the molar heat capacity is 3R.

3.2.2 Metals

We can imagine an atom of metals as a particle sitting in a harmonic potential centered on its place in the
crystal lattice. There are 6 total energy modes - three translational and three rotational. Therefore, we
expect the molar heat capacity to be 3R.

3.3 Partition Function

So far, we only used the basic derivations of statistical mechanics, but the methods were essentially classical.
But, we can completly reformulate the thermodynamics using pretty much only the partition function. To
do this, we first need to remember the basic functions of state for a thermodynamical system

3.3.1 Classical Functions of State

Since for canonical ensemble T and V are fixed, they are effectively not a functions of state, but only the
variables. Also, since particles are not exchanged, the number of particles N is also only a variable and not
a function of state.
The classical functions of state are then internal energy U , entropy S, pressure p, Helmholtz free energy
F , enthalpy H and Gibbs free energy G. The internal energy is defined by statistical mechanics as

U =
∑
i

EiPi

where Ei is the energy of ith microstate and Pi is probability of system being in this microstate.
The entropy is defined by Gibbs formula

S = −kB
∑
i

Pi lnPi

Helmholtz free energy is defined as
F = U − TS (12)

Pressure is classically defined from the first law of thermodynamics

dU = TdS − pdV

and change in Helmholtz free energy

dF = d(U − TS) = dU − TdS − SdT = TdS − pdV − TdS − SdT = −pdV − SdT

which leads to

p = −
(
∂F

∂V

)
T

The enthalpy is defined as
H = U + pV (13)

The Gibbs free energy is defined as
G = H − TS (14)

13
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3.3.2 Partition Function Formulation

For canonical ensemble, we had

Z =
∑
i

e−βEi

Applying a derivative with respect to β

dZ

dβ
=
∑
i

(−Ei)e−βEi = −
∑
i

Eie
−βEi

Comparing this to the definition of internal energy for canonical ensemble

U =
∑
i

EiPi =
∑
i

Eie
−βEi 1

Z

we then have
dZ

dβ
= −ZU

and thus

U = − 1

Z

dZ

dβ
= −d(lnZ)

dβ
(15)

Thus, we can determine the internal energy directly from the partition function.
We can try to do the same for the rest of the state functions. For entropy, we can use Gibbs definition of
entropy and Boltzmann distribution

S = −kB
∑
i

e−βEi

Z
ln

(
e−βEi

Z

)
= −kB

Z

∑
i

e−βEi (−βEi − lnZ) =

=
kB
Z

∑
i

βEie
−βEi +

kB
Z

lnZ
∑
i

e−βEi = kBβU + kB lnZ

So, we have

S = kB lnZ − 1

T

d lnZ

dβ
(16)

Therefore, the Helmholtz free energy is

F = U − TS = U − T (kBβU + kB lnZ) = U − kBT
1

kBT
U − kBT lnZ

And therefore
F = −kBT lnZ (17)

Sometimes, it is therefore easier to calculate the entropy from the definition of Helmholtz free energy as

S =
U − F
T

Using the expression for pressure, we have

p = −
(
∂F

∂V

)
T

= −
(
∂(−kBT lnZ)

∂V

)
T

= kBT

(
∂ lnZ

∂V

)
T

Thus the enthalpy is

H = U + pV = kBTV

(
∂ lnZ

∂V

)
T

− d lnZ

dβ
= kBT

[
V

(
∂ lnZ

∂V

)
T

+ T
d lnZ

dT

]
And Gibbs free energy

G = F + pV = −kBT lnZ + kBTV

(
∂ lnZ

∂V

)
T

= kBT

[
V

(
∂ lnZ

∂V

)
T

− lnZ

]

14
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3.3.3 Equipartition Revised

We have shown that the equipartition partition function was

Z =

(
π

β

)n
2

n∏
i=1

1
√
αi

Therefore

lnZ =
n

2
(lnπ − lnβ)− 1

2

n∑
i=1

lnαi

and

U = −d lnZ

dβ
=
n

2

d lnβ

dβ
=

n

2β
=
n

2
kBT

which is the same result as before, but obtained on three lines of almost trivial calculation. But, the results
for other variables are not very useful, because the Z constructed for equipartition is not dimensionless.

3.4 1D Harmonic Oscillator

The energy of a 1D quantum harmonic oscillator is given as

En =

(
n+

1

2

)
h̄ω0

where ω0 is the natural frequency of the oscillator.
Therefore, the partition function is

Z =

∞∑
n=0

e−βEn =

∞∑
n=0

e−βnh̄ω0− β2 h̄ω0 = e−
β
2 h̄ω0

∞∑
n=0

(
e−βh̄ω0

)n
We can recognize that the sum is the geometric series with ration e−βh̄ω0 Therefore

∞∑
n=0

e−βh̄ω0n =
1

1− e−βh̄ω0

(
1− lim

n→∞
e−βh̄ω(n+1)

)
But, the limit goes to zero, so

Z = e−
1
2βh̄ω0

1

1− e−βh̄ω0
=

e−
1
2βh̄ω0

1− e−βh̄ω0
(18)

The internal energy than can be derived as

lnZ = −βh̄ω0

2
− ln

(
1− e−βh̄ω0

)
U = −d lnZ

dβ
=
h̄ω0

2
+

1

1− e−βh̄ω0

(
−e−βh̄ω0

)
(−h̄ω0) = h̄ω0

[
1

2
+

e−βh̄ω0

1− e−βh̄ω0

]
Hence the heat capacity

CV =
∂U

∂T
= h̄ω0

−h̄ω0e
−βh̄ω0 dβ

dT (1− e−βh̄ω)− e−βh̄ω0(−e−βh̄ω0)(−h̄ω0) dβdT
(1− e−βh̄ω0)2

=

= −h̄2ω2
0e
−βh̄ω0

dβ

dT

(1− e−βh̄ω0) + e−βh̄ω0

(1− e−βh̄ω0)2
= −h̄2ω2

0e
−βh̄ω0(−kBβ2)

1

(1− e−βh̄ω0)2

So, we have

CV = kB(βh̄ω0)2 e−βh̄ω0

(1− e−βh̄ω0)2

For a large temperature, β → 0, so

CV → kB(βh̄ω0)2 (1− βh̄ω0)

(1− (1− βh̄ω0))2
= kB(βh̄ω0)2 (1− βh̄ω0)

(βh̄ω0)2
→ kB

which is the same result as we would obtain by equipartition.

15



PX265 - Thermal Physics II Formulae list and derivation

3.5 Degeneracy

In case that a state with the same energy can be occupied in multiple degenerate setups, then we need to
reflect this in the partition function - as the temperature rises, the states become all equally probable, and
thus more degenerate states will be likely more occupied than low degeneracy states.
This can be accounted for simply by treating each of the degenerate states as a state on its own (unless
the states are indistinguishable, which will be discussed later), so the partition function becomes

Z =
∑
i

gie
−βEi (19)

where gi is the number of degenerate states with energy Ei.

3.5.1 Degenerate 2-state System

Consider a two state system, with energies 0 and ∆. But this time, the energy level 0 has degeneracy g1

and energy level ∆ has degeneracy g2. The partition function is

Z = g1e
−β0 + g2e

−β∆ = g1 + g2e
−β∆

The internal energy is now

U = − 1

Z

dZ

dβ
=

−1

g1 + g2e−β∆
g2e
−β∆(−∆) =

g2∆e−β∆

g1 + g2e−β∆
=

∆

1 + g1

g2
eβ∆

In high temperature limit (β → 0)

U → ∆

1 + g1

g2
(1 + β∆)

→ ∆

1 + g1

g2

Hence, if g2 >> g1, then U → ∆. This can be explained by considering that at high temperature, any
state is approximately equally probable. But, if there is much more states with energy ∆ (g2 >> g1), then
the average state is basically state 2 and thus the average enery is its energy, which is ∆.

3.6 Combining Systems

In thermodynamics, we usually deal with big systems consisting of many individual smaller systems. In
order to be able to create these combinations, we need to know how to combine the partition functions of
systems.
Lets number states of system 1 by i and states of system 2 by j. Hence, the state of the combination of
the two systems can be expressed as state i, j. The energy of this state is simply

Ei,j = E1i + E2j

where E1i is the energy of the state i in the system 1, and analogously E2j is energy of state j in system 2.
The partition function then is

Z =
∑
i

∑
j

e−βEi,j =
∑
i

∑
j

e−β(E1i+E2j) =
∑
i

∑
j

e−βE1ie−βE2j =

(∑
i

e−βE1i

)∑
j

e−βE2j


But, we can recognize the bracketed expressions as partition functions of the component systems. Therefore

Z = Z1Z2 (20)

The combined partition function is therefore the product of the partition functions of the composite systems.
Similarly we see that any function of state that depends on lnZ (such as energy, Helmholtz free energy,
entropy, pressure, etc.) is additively extensive (combined function of state is the sum of the composite
functions of state - for energy, this was effectively our assumption, so it should not be too surprising)
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3.6.1 Indistinguishibility

In the above derivation, we suggested that each combination of states (i, j) is distinguishable from each
other. This could apply even if the energy of some pair of states, say (i, j), was the same as energy of other
pair of states, say (k, l), as long as there is some property (such as spin) that differentiates the states from
each other. Then, this simply comes up as a degeneracy factor.
But sometimes some pairs of states are virtually indistinguishable. This tends to happen especially if
we combine identical systems, for example when modelling behaviour of N identical particles, each with
partition function Z1. Then, any specific state combination (i, j, ...) is indistinguishable from any state
which is specified by a permutation of indices i, j, .... Since there is N indices (N particles), the number of
permutations is N !. Since these states are indistinguishable, we must not count them more then once each.
Therefore, the combined partition function for such system is

Z =
1

N !

∑
i,j,...

e−β(E1i+E2j+...) =
ZN1
N !

(21)

3.6.2 3D Harmonic Oscillator

The harmonic oscillator in 3D is effectively a combination of three independent harmonic oscillators, each
in one perpendicular dimensions. These oscillations are each distinct, so the combined partition function
of 3D harmonic oscillator is

Z3DSHO = (Z1DSHO)
3

=
e−

3
2βh̄ω

(1− e−βh̄ω)3

Hence
lnZ3DSHO = 3 lnZ1DSHO

and therefore U3DSHO = 3U1DSHO, as expected, and similarly for all other functions of state.

3.6.3 Spin-half Paramagnet

Imagine an atom with one unpaired electron. This electron has spin angular momentum component in the
z direction given as h̄s where s = ± 1

2 .
The magnetic moment given by this spin is

µ = −gµBs

where g is the gyromagnetic ratio of the electron and µB = eh̄
2me

is the Bohr magneton. The minus sign is
to account for negative charge of the electron. Since g ≈ 2, we can simplify this as

µ ≈ ∓µB
The energy of an electron in a magnetic field B in z direction is

E = µB = ∓µBB

Therefore, this electron in magnetic field forms effectively a two state system.
For a constant volume paramagnet, the first law of thermodynamics is

dU = TdS + dEM

where EM is the total magnetic energy stored in the orientation of electron spins. The macroscopic variable
measuring the overall magnetic moment of the paramagnet is magnetisation m, which points in the direction
of the magnetic moment. Since for aligned moment the energy is smaller and increasing the field causes
bigger energy well for aligned moments m, we have

dU = TdS −mdB (22)

Therefore, the change in Helmholtz free energy is

dF = d(U − TS) = d(U)− TdS − SdT = TdS −mdB − TdS − SdT = −mdB − SdT

Therefore for a fixed temperature

m = −
(
∂F

∂B

)
T

= kBT

(
∂ lnZ

∂B

)
T

17
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Since the paramagnet is a two state system (for one atom that is), the partition function is

Z1 = e−βµBB + eβµBB = 2 cosh(βµBB)

In a solid, all atoms sit in a distinct position given by crystallic lattice, and therefore are all distinguishable.
Therefore, the combined partition function for all N atoms of the paramagnet is

Z = (Z1)N

And thus the magnetisation of the magnet is

m = kBT

(
∂ lnZ

∂B

)
T

= NkBT

(
∂ lnZ1

∂B

)
T

=
NkBT

2 cosh(βµBB)
2 sinh(βµBB)βµB = NµB tanh(βµBB)

3.7 Thermodynamic Potentials

Lets now return to the second law of thermodynamics, that is dS ≥ 0. This means that at the thermal
equilibrium, the entropy of the system is maximized.
The entropy is defined as

S = −kB
∑
i

Pi lnPi

At the maximum value

∀j :
∂S

∂Pj
= 0

Using the definition of entropy and assuming that we vary only some Pj and Pk

∀j : 0 = −kB
[
∂Pj
∂Pj

lnPj + Pj
1

Pj

∂Pj
∂Pj

+
∂Pk
∂Pj

lnPk + Pk
1

Pk

∂Pk
∂Pj

]
Since

1 =
∑
i

Pi

we can check that if we vary only some specific Pj and Pk, we have

∂Pj
∂Pk

= −1

And thus
lnPj + 1 = lnPk + 1

or
Pj = Pk

Therefore, the probability of existing in each microstate is identical in thermal equilibrium. This applies
generally for all isolated systems. The case why we have probability distribution in canonical ensemble is
because the probability of the microstates of the system with the reservoir together is uniform, but since
the reservoir is bigger than the system, several microstates of the system+reservoir correspond to a single
microstate of the system only.

3.7.1 Systems with Fixed Temperature and Volume

The first law of thermodynamics for systems with fixed volume and temperature is (at equilibrium)

dU = TdS − pdV = TdS

The Helmholtz free energy is
F = U − TS

and its change is (at equilibrium)

dF = dU − TdS − SdT = dU − TdS = 0

18
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Therefore, the value of Helmhotz free energy is extremal at the equilibrium. To find the nature of this
extremum, consider more general form of first law of thermodynamics

dU = d̄Q+d̄W

where d̄Q is the heat transfered to the system and d̄W is the work done on the system.
which can be rewritten as

d̄Q ≤ dU

d̄Q ≤ TdS

Since the volume is not changing, d̄W = 0, and therefore

d̄Q+d̄W − TdS = dU − TdS = dF ≤ TdS +d̄W − TdS = 0

and we have
dF ≤ 0

Therefore, the Helmholtz free energy reaches its minimum value at equilibrium.
By similar procedure, it can be shown that enthalpy is minimised for fixed S and p and that Gibbs free
energy is minimized for fixed T and p.
The functions that are minimized in the equilibrium of a system are called the thermodynamic potentials.

3.7.2 Minimizing F

We can use our definitions of internal energy and entropy to minimise F for constant V and T , finding
the minimum in the coordinate space of probabilities of microstates Pi. This can be achieved by using
Lagrange multipliers, where our function to be minimized is F

F = U − TS =
∑
i

EiPi + kBT
∑
i

Pi lnPi

and our constraint is ∑
i

Pi = 1

Therefore, we have

∀j :
∂

∂j

(∑
i

EiPi + kBT
∑
i

Pi lnPi − λ
∑
i

Pi

)
= 0

where λ is the Lagrange multiplier. This leads to

∀j : Ej + kBT (lnPj + 1)− λ = 0

∀j : lnPj + 1 =
λ− Ej
kBT

∀j : Pj = e
λ

kBT
−1
e
−

Ej
kBT

Since λ is just some constant, we can write e
λ

kBT
−1

= A and thus

PJ = Ae−βEj

which we recognize as Boltzmann distribution. Therefore, our formalism is fully compatible with the
formalism of thermodynamical potentials.
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3.8 Fluctuations

We expect the fluctuations in energy to be in order of standard deviation of the energy. As we defined in
the beginning, the standard deviation of a random variable is

σ2
x =< x2 > − < x >2

So, for energy
σ2
E =< E2 > − < E >2

We already know that the mean energy is the total internal energy of the system, but we need to determine
< E2 >. This is defined as

< E2 >=
∑
i

E2
i Pi

For canonical ensemble

< E2 >=
1

Z

∑
i

E2
i e
−βEi

But, consider d2Z
dβ2

d2Z

dβ2
=

d2

dβ2

∑
i

e−βEi =
d

dβ

∑
i

(−Ei)e−βEi =
∑
i

E2
i e
−βEi

Therefore

< E2 >=
1

Z

d2Z

dβ2

and thus

σ2
E =

1

Z

d2Z

dβ2
− 1

Z2

(
dZ

dβ

)
But, we can notice one more thing. If we are determining the heat capacity

CV =
dU

dT
=
dβ

dT

dU

dβ
= −kBβ2 d

dβ

(
− 1

Z

dZ

dβ

)
= kBβ

2

(
− 1

Z2

(
dZ

dβ

)2

+
1

Z

d2Z

dβ2

)
= kBβ

2σ2
E

Therefore
σE =

√
kBCV T (23)

Which corresponds to approximate fluctuations magnitude of energy. Similarly, we could derive the fluc-
tuation in other state functions, but these usually depend on the specific energy distribution of Eis.
Importantly, if we consider a big system of identical particles with partition function

Z =
ZN1
N !

The total energy of the system is

U = −dN lnZ1 − lnN !

dβ
= NU1

And thus

CV =
dU

dT
= N

dU1

dT
= NCV 1

and
σ =

√
kBCV T =

√
kBNCV 1T

and
σ

U
=

√
kB

CV 1N
T

which means that the relative size of the fluctuations decreases as inverse square root of N .
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3.9 Ideal Gases

For ideal gases, there is no interaction between the molecules. Therefore, the molecules are free particles,
usually enclosed in some volume V . This means that the wavefunctions of the particles are plane waves
with wavevector

~k =

(
2π

Lx
nx,

2π

Ly
ny,

2π

Lz
nz

)
Therefore the volume in k-space corresponding to one state is

∆Vk = ∆kx∆ky∆kz =
(2π)3

LxLyLz
=

(2π)3

V

where V is the real volume of the gas.
The energy of the molecule can be expressed as a function of k and is

E =
h̄2k2

2m∗

where m∗ is the effective mass of the molecule. Since here we take only magnitude of the k vector, we
expect some degeneracy of states with the same k but different ~k. To quantify this degeneracy, we usually

use the density of states - we say that the number of states that have energy h̄2k2

2m∗ or close to within small
interval dk is

g(k)dk

where g(k) is the density of states. Density of states is given as a derivative of the number of states that
have smaller energy than the one given by k. It can be also derived as follows. Consider a small spherical
volume in k-space, with radius from k to dk. The number of states in this volume (and thus our searched
number g(k)dk) is

g(k)dk = 4πk2dk
1

∆Vk
=
V k2

2π2
dk

If there can exist D states with the same momentum, then the volume per state is decreased by a factor of
1
D and thus the density of states becomes

g(k)dk = D
V k2

2π2
dk

Thus, we have the energy of each state and the energy degeneracy of each state. So, the partition function
of one molecule of the gas is

Z1 =

∫ ∞
0

g(k)e−β
h̄2k2

2m∗ dk

where the integral goes from 0 to infinity because k is magnitude, which only takes positive values. Sub-
stituting for g(k)

Z1 =

∫ ∞
0

DV k2

2π2
e−β

h̄2k2

2m∗ dk

Substituting y =
√

β
2m∗ h̄k, we have

Z1 =
DV

2π2

(
2m∗

βh̄2

) 3
2
∫ ∞

0

y2e−y
2

dy

The second integral can be calculated similarly as shown before. Start by integration per partes∫ ∞
0

y2e−y
2

dy =
[
−y

2
e−y

2
]∞

0
+

1

2

∫ ∞
0

e−y
2

dy =
1

2

∫ ∞
0

e−y
2

dy

Denoting

I =

∫ ∞
0

e−y
2

dy

I2 =

(∫ ∞
0

e−y
2

dy

)(∫ ∞
0

e−x
2

dx

)
=

∫ ∞
0

∫ ∞
0

e−(x2+y2)dxdy
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Changing to polar planar coordinates

I2 =

∫ ∞
0

∫ π
2

0

e−r
2

rdφdr =
π

2

∫ ∞
0

re−r
2

dr =
π

2

[
−1

2
e−r

2

]∞
0

=
π

4

Thus ∫ ∞
0

y2e−y
2

dy =

√
π

4

and

Z1 =
DV

2π2

(
2m∗

βh̄2

) 3
2
√
π

4
= DV

(
m∗kBT

2πh̄2

) 3
2

=
DV

λth

where λth is so called thermal wavelength

λth =

√
2πh̄2

m∗kBT
=

h√
2πm∗kBT

(24)

Sometimes, we also mark

nQ =
1

λ3
th

where nQ is the quantum concentration. At this concentration, the thermal wavelengths of the particles
start to overlap, and the particles’ states start to overlap, which has specific consequences for bosons and
fermions separately.
But as long as concentration is significatnly smaller then quantum concentration, the particles states do
not overlap as much and we can.
At these concentrations, we also assume that particles are not forced to the same state, and thus we can
effectively set D = 1, as every state accesible to the particles is occupied by a maximum of 1 particle.
Therefore, this semi-classical mode has partition function

Z1 =
V

λ3
th

= V

(
m∗kBT

2πh̄2

) 3
2

(25)

Now we need to combine the partition functions for N particles in the gas. But since these particles are
indistinguishable, we write

Z =
ZN1
N !

The logarithm of partition function is (using Sterling approximation)

lnZ ≈ N lnZ1 −N lnN +N

The pressure of the gas is then

p = kBT

(
∂ lnZ

∂V

)
T

= kBTN
∂ lnZ1

∂V
= kBTN

∂ lnV

∂V
=
kBTN

V

we therefore have our ideal gas equation
pV = NkBT (26)

The Helmholtz free energy is

F = −kBT lnZ = −kBTN lnZ1 + kBT (N lnN −N)

The internal energy is

U = −d lnZ

dβ
= −N d lnZ1

dβ
= −N 3

2

1

T

dT

dβ
= −3

2
N

1

T dβ
dT

=
3

2
NkBT

Hence the entropy is

S =
U − F
T

=
3

2
NkB + kBN lnZ1 − kBN lnN + kBN =

5

2
kBN + kBN ln

(
Z1

N

)
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Therefore

S = NkB

[
5

2
+ ln

(
V

Nλ3
th

)]
(27)

This is called the Sackur-Tetroda equation. It is especially important since it differs from the entropy for
the case where the individual particles of the gas are distinguishable. For such case, Z = ZN1 , which does
not change U but changes F to

F ′ = −kBT lnZ = −NkBT lnZ1

So

S′ =
3

2
NkB +NkB lnZ1 = NkB

[
3

2
+ ln

(
V

λ3
th

)]
3.9.1 Gibbs Paradox

Consider now two situations. In the first situation, we have two volumes of gas, each of volume V , separated
by a barrier. Suppose that in one volume, gas A is present, and different gas B is in the other volume.
Now, we remove the barrier between the gases. After the gases mix, how does the entropy of the system
change? We expect it to grow, as this process is irreversible. To calculate it precisely, first assume that
molecules of each gas are distinguishable.
The entropy of gas A before expansion is then

S′A = NAkB

[
3

2
+ ln

(
V

λ3
A

)]
The entropy of gas B before expansion is

S′B = NBkB

[
3

2
+ ln

(
V

λ3
B

)]
The entropy of gas A after expansion is

S′Af = NAkB

[
3

2
+ ln

(
2V

λ3
A

)]
The entropy of gas B after expansion is

S′Bf = NBkB

[
3

2
+ ln

(
2V

λ3
B

)]
Which means that the change in entropy is

∆S′ = S′Af + S′Bf − S′A − S′B = NAkB ln 2 +NBkB ln 2

Similarly for indistinguishable molecules of two different gases (indistinguishable for each gas respectively,
but molecules of A distinct from those of B)

SA = NAkB

[
5

2
+ ln

(
V

NAλ3
A

)]

SB = NBkB

[
5

2
+ ln

(
V

NBλ3
B

)]
SAf = NAkB

[
5

2
+ ln

(
2V

NAλ3
A

)]
SBf = NBkB

[
5

2
+ ln

(
2V

NBλ3
B

)]
So

∆S = SAf − SA + SBf − SB = NAkB ln 2 +NBkB ln 2

Therefore, in this case, both approaches predict the same result, which is an increase in entropy, which is
what we expect.
Now consider a different situation, in with the same setup but now the gas A and gas B are identical in
the beginning, lets say that both volumes are filled with gas A. Now, we would expect that removing the
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barrier will not change the entropy, because the process should reversible (the gases do not in anyway mix
more - they are the same gases) Again, start by considering molecules of A as distinguishable, the initial
entropy is

S′ = 2NAkB

[
3

2
+ ln

(
V

λ3
A

)]
and final entropy is

S′f = 2NAkB

[
3

2
+ ln

(
2V

λ3
A

)]
Therefore there is a change in entropy and it is

∆S′ = 2NAkB ln 2

This is very bizzare. Fortunately, the second approach gives a reasonable result. For the particles being
indistinguishable

S = 2NAkB

[
5

2
+ ln

(
V

NAλ3
A

)]
But, the entropy after expansion is

Sf = 2NAkB

[
5

2
+ ln

(
2V

2NAλ3
A

)]
= 2NAkB

[
5

2
+ ln

(
V

NAλ3
A

)]
which predicts expected change in entropy

∆S = 0

Therefore, the particles of a gas must be indistinguishable for this situation to make sense.

4 Grand-Canonical Ensemble

4.1 Chemical Potential

Chemical potential µ is defined as amount of energy generated by adding particles to the system. The first
law of thermodynamics with chemical potential becomes

dU = TdS − pdV + µdN (28)

where dN is the change in the number of particles. If there is multiple types of particles that can be added
to the system, then they have their respective chemical potentials.
From this definition, we can derive

µ =

(
∂U

∂N

)
S,V

The change in Helmholtz free energy is

dF = dU − TdS − SdT = µdN − pdV − SdT

Hence

µ =

(
∂F

∂N

)
V,T

The change in Gibbs free energy is

dG = dF + pdV + V dp = µdN + V dp− SdT

Hence

µ =

(
∂G

∂N

)
p,T

Since G = U + pV − TS, for fixed p and T , U , V and S are all extensive with number of particles. So,
assume that we have some basic Gibbs energy of one particle G1. The Gibbs energy of N particles is then

G = NG1
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And the chemical potential of these particles is

µ =
∂NG1

∂N
= G1

because G1 of one individual particle cannot depend on the number of particles N (for non-interacting
particles). Reexpressing this in terms of original Gibbs energy

µ =
G

N
(29)

4.1.1 Connected Systems

Consider two connected systems, which can particles, but are otherwise independent and have fixed, even
though possibly different, volumes and temperatures.
Also, assume that the total number of particles is fixed. So

N1 +N2 = N = const.

where N1/2 is the number of particles in the first/second system. By the second law of thermodynamics

dS ≥ 0

The only thing that can increase the entropy here is the exchange of particles (since the temperature is
fixed). Also, because temperature is fixed, the internal energy of the systems is fixed (assuming that they
reached equilibrium). Hence

dS =

(
∂S1

∂N1

)
U,V

dN1 +

(
∂S2

∂N2

)
U,V

dN2 ≥ 0

For fixed volume and internal energy (temperature), we then have from the first law of thermodynamics

dU = 0 = TdS − pdV + µdN = TdS + µdN

µ

T
= −

(
∂S

∂N

)
U,V

Also, since the total number of particles is fixed

dN1 = −dN2

And thus
dS = −µ1

T1
dN1 +

µ2

T2
dN1 ≥ 0(

µ2

T2
− µ1

T1

)
dN1 ≥ 0 (30)

This means that if µ1

T1
≥ µ2

T2
, then dN1 has to be negative and thus particles are leaving the system 1 and

entering system 2. Similarly, if µ2

T2
≥ µ1

T1
, particles must be entering system 1 and leaving system 2. This

continues until the difference of these potentials is set to zero and

µ1

T1
=
µ2

T2

4.2 Grand-Partition Function

To derive the form of grand-partition function, consider a system in contact with a large reservoir so
that it can exchange energy and particles with the reservoir. The ability to exchange energy leads to the
temperature of both the system and the reservoir being fixed at the same value. The fixed temperature
together with ability to exchange particles than leads to the chemical potential of both the system and the
reservoir to be fixed at a common value.
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The entropy of the system then does generally depend on the number of particles in the system Ni and
energy of the system Ei. If the total energy and total number of particles is fixed as N and E respectively,
the entropy of the reservoir is

S = S(E − Ei, N −Ni) ≈ S(E,N)−
(
∂S

∂U

)
V,T,N

Ei −
(
∂S

∂N

)
V,T,U

Ni

The first law of thermodynamics is
dU = TdS − pdV + µdN

For fixed temperature, volume and number of particles

dU = TdS(
∂S

∂U

)
T,V,N

=
1

T

For fixed temperature, volume and internal energy

0 = TdS + µdN(
∂S

∂N

)
T,V,U

= −µ
T

Hence

S(E − Ei, N −Ni) ≈ S(E,N)− Ei
T

+
µNi
T

Using Boltzmann definition of equilibrium entropy

S = kB ln Ω

We have

ln Ω(E − Ei, N −Ni) ≈ ln Ω(E,N)− 1

kBT
(Ei − µNi) = ln

(
Ω(E,N)e−β(Ei−µNi)

)
Ω(E − Ei, N −Ni) = Ω(E,N)e−β(Ei−µNi)

Again, we assume that for big reservoir, the probability of state of the system goes as

P (Ei, Ni) ∝ Ω(E − Ei, N −Ni)

And thus

P (Ei, Ni) =
e−β(Ei−µNi)

Z
(31)

Where the normalization factor z is the grand-partition function

Z =
∑
i

e−β(Ei−µNi) (32)

Similarly with the case of canonical ensemble, where the thermodynamical potentail was the Helmholtz
free energy, we introduce the grand-potential, defined as

ΦG = U − TS − µN (33)

and is also sometimes called the Landau free energy.
Now, we need to determine the internal energy and expected number of particles from the grand-partition
function, similarly as before.
The internal energy is

U =
∑
i

EiPi =
∑
i

Ei
e−β(Ei−µNi)

Z

And the number of particles

N =
∑
i

NiPi =
∑
i

Ni
e−β(Ei−µNi)

Z
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Using the Gibbs definition of entropy

S = −kB
∑
i

Pi lnPi = −kB
∑
i

e−β(Ei−µNi)

Z
(−β(Ei − µNi)− ln Z )

S = kB
∑
i

βEi
e−β(Ei−µNi)

Z
− kB

∑
i

βµNi
e−β(Ei−µNi)

Z
+ kB lnZ

∑
i

e−β(Ei−µNi)

Z

Using previously defined relations and definition of grand-partition function

S = kBβU − kBβµN + kB ln Z

Hence
TS = kBTβU − kBTβµN + kBT ln Z = U − µN + kBT ln Z

And thus
ΦG = −kBT ln Z (34)

which is exactly analogous to expression for Helmholtz free energy in canonical ensemble, where the
Helmholtz free energy was the thermodynamical potential.
One important observation is that when µ = 0, Z → Z and ΦG → F and the ensemble becomes described
by canonical ensemble formalism, even though the number of particles changes over time.

4.2.1 Grand-Partition Function Formalism

Similarly as before, we are able to derive several functions of state from the partition function. For example,
we have

∂Z

∂µ
=
∑
i

βNie
−β(Ei−µNi) = Z βN

And thus

N =
1

βZ

∂Z

∂µ
= kBT

∂ ln Z

∂µ
(35)

For energy, we can use

∂Z

∂β
=
∑
i

−(Ei − µNi)e−β(Ei−µNi) = −
∑
i

Eie
−β(Ei−µNi) + µ

∑
i

Nie
−β(Ei−µNi) = −Z (E − µN)

Therefore

E − µN = − 1

Z

∂Z

∂β
= −∂ ln Z

∂β

And thus

E = µkBT
∂ ln Z

∂µ
− ∂ ln Z

∂β
(36)

4.2.2 One State System

Consider a system in contact with large reservoir which has exactly one state with energy ε such that every
particle that occupies this state has energy ε. Therefore, if there are N particles in the system, the energy
of the system is Nε. Therefore, the grand-partition function of the system is

Z =

Nmax∑
N=0

e−β(EN−µN) =

Nmax∑
N=0

e−βN(ε−µ)

We can recognize this as geometric series, which equal to

Z =
1− e−β(ε−µ)(Nmax+1)

1− e−β(ε−µ)
(37)

Therefore, the average number of particles in the state (the average occupacy of the state) is

N = kBT
∂ ln Z

∂µ
= kBT

[
−e−(Nmax+1)β(ε−µ)

1− e−(Nmax+1)β(ε−µ)
((Nmax + 1)β) +

e−β(ε−µ)

1− e−β(ε−µ)
β

]

N =
e−β(ε−µ)

1− e−β(ε−µ)
− (Nmax + 1)e−(Nmax+1)β(ε−µ)

1− e−(Nmax+1)β(ε−µ)
(38)

This will be useful for quantum statistics, which are discussed as last part of this module.
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4.3 Particle Conservation Laws

Consider now two special cases. First, a system with fixed temperature and volume where the particles can
be created freely. Since the particles can be created in without limitations, at the equilibrium, all functions
of state of the system must be independent of the number of particles.
Therefore, for Helmholtz free energy (

∂F

∂N

)
T,V

= 0

Small change in Helmholtz free energy is

dF = dU − TdS − SdT = −pdV + µdN − SdT

and thus (
∂F

∂N

)
T,V

= µ

This means that if the particles can be created without limitiations, the chemical potential in the system
must be µ = 0.
Consider now a different situation, where there are two types of particles that can be created, and the
difference of number of these particles is kept constant, i.e. particles can be created only in pairs of the
two types. This is typical behaviour for example for creation of electron-positron pairs.
Since the difference of the particle number is conserved, if we write the difference of the particle number
as a state variable, we have a fixed V , T and N where

N = N+ −N−

is the difference of the particle number, and thus the potential of thus system is the Helmholtz free energy
F (V, T,N). At the equilibrium

dF = 0

dU − TdS − SdT = 0

µ+dN+ + µ−dN− − pdV − SdT = 0

Since V and T are constant

µ+
dN+

dN−
+ µ− = 0

But, from the definition of constant N

dN = 0 = dN+ − dN−

dN+

dN−
= 1

And thus
µ+ = −µ−

5 Quantum Gases

So far, we have only discussed the classical ideal gases. But, methods of statistical physics can be used
to described generalized systems of non-interacting particles that follow some creation rules even in the
quantum regime. First, we try to derive them in a sort of semi-classical way, in which they were probably
first derived.
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5.1 Semi-Classical Approach

5.1.1 Photon Gas

Photons are particles of the electromagnetic radiation. Because photons are massless, we can assume they
can be created at will. Therefore, they can be described as a canonical ensemble (µ = 0). First attempt at
modelling photon gas was to assume that each photon is approximately a 1D harmonic oscillator, oscillating
in the direction of its polarisation.
The energy of a harmonic oscillator at frequency ω is

U(ω) = h̄ω

(
1

2
+

e−βh̄ω

1− e−βh̄ω

)
= h̄ω

(
1

2
+

1

eβh̄ω − 1

)
The wavenumber of a photon is given as

k =
ω

c

and photons can exist in two polarised states for each wavevector ~k. Therefore, the density of states for
photons uses D = 2 and is

g(k)dk = 2
V k2

2π2
dk

Hence

g(ω)dω = g(k(ω))dk(ω)
V ω2

π2c2
dω

c
=
V ω2

π2c3
dω

Then, the total internal energy of the photon gas is

E =

∫ ∞
0

g(ω)U(ω)dω

And the energy density

u =
E

V
=

1

V

∫ ∞
0

V ω2

π2c3
h̄ω

(
1

2
+

1

eβh̄ω − 1

)
dω

Planck, who came up with this relationship, then argued that since the photons can be created and
anihilated at will, it makes no sense to talk about the zero point energy, and therefore we should neglect
the 1

2 in the bracket (also, the integral diverges if we consider it). Then

u =

∫ ∞
0

h̄

π2c3
ω3

eβh̄ω − 1
dω

Substituting x = βh̄ω, we obtain

u =
h̄

π2c3

∫ ∞
0

1

β3h̄3

x3

ex − 1

1

βh̄
dx = u =

1

π2c3h̄3β4

∫ ∞
0

x3

ex − 1
dx

This integral turns out to be a standard one, and equals π4

15 . Therefore

u =
π2

15c3h̄3 k
4
BT

4 =
4σ

c
T 4 (39)

where

σ =
π2k4

B

60c2h̄3 ≈ 5.67 W K−4m−2

Is the Stefan-Boltzmann constant.
This then leads to surface intensity

I = σT 4

and maximum at
λmaxT = b

where b ≈ 2.898 mm K is the Wien’s displacement constant.
Historically, this is called the black-body radiation problem and it is one of the problems that lead to the
formulation of quantum mechanics. But even today, the same physics is still applied, for example to cosmic
microwave background, which is a very good black-body radiation, with temperature 2.726 K.
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5.1.2 Einstain Model of Phonon Gas

Phonons are virtual particles that create oscillations in the lattice of solids. Generally, we expect 3 po-
larizations of phonons per each wavevector of phonon, and we expect that they are free to appear and
disappear.
In the Einstain model, we assume that the frequency of all phonons is the same, and therefore the density
of states as a function of frequency is

g(ω) = 3Nδ(ω − ωE)

where ωE is the frequency of oscillations (Einstain frequency) and N is the total number of phonons in the
system (for each phonon, there is 3 states available).
We model each phonon as a 1D simple harmonic oscillator, again neglecting the zero point energy. Therefore

E =
h̄ω

eβh̄ω − 1

Therefore, the total internal energy is

U =

∫ ∞
0

E(ω)g(ω)dω = 3NE(ωE) = 3N
h̄ωE

eβh̄ωE − 1

We usually substitute h̄ωE = kBθE , where θE is the Einstain temperature. Then

U = 3N
kBθE

e
θE
T − 1

(40)

We can also determine the heat capacity

CV =
∂U

∂T
= 3N

kBθEe
θE
T(

e
θE
T − 1

)2

θE
T 2

= 3NkB
θ2
E

T 2

e
θE
T(

e
θE
T − 1

)2

This model is reasonably well for high and intermediate temperatures, but is not precise for small temper-
atures.

5.1.3 Debye Model for Phonon Gas

In the Debye model, phonons follow dispersion relation

ω = vk (41)

where v is the speed of sound in the medium. The density of states is

g(ω)dω =
3V ω2

2π2v3
dω

The phonons are again modelled as harmonic oscillators with no zero-point energy. The main difference to
previous models is that there is some assumed cut-off frequency, called Debye frequency ωD, which limits
the oscillations of atoms. Then the total energy is

U =

∫ ωD

0

g(ω)
h̄ω

eβh̄ω − 1
dω

The condition on Debye frequency is that the integral of density of states up to Debye frequency includes
all accesible states, so ∫ ωD

0

g(ω)dω = 3N

where N is the number of phonons. Then

3V

2π2v3

∫ ωD

0

ω2dω = 3N

V ω3
D

2π2v3
= 3N
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ωD =
3

√
6Nπ2v3

V
(42)

Also

g(ω)dω =
9Nω2

ω3
D

So, the total energy is

U =
9Nh̄

ω3
D

∫ ωD

0

ω3

eβh̄ω − 1
dω

Substituting x = βh̄ω

U =
9Nh̄

ω3
D

1

β4h̄4

∫ x
βh̄

0

x3

ex − 1
dx

The heat capacity is

C =
∂U

∂T
=

9Nh̄

ω3
D

∫ ωD

0

ω3

(eβh̄ω − 1)2
eβh̄ωh̄ωkBβ

2dω =
9Nh̄2kBβ

2

ω3
D

∫ ωD

0

ω4eβh̄ω

(eβh̄ω − 1)2
dω

For low T , β →∞ and

C → 9Nh̄2kBβ
2

ω3
D

∫ ωD

0

ω4

eβh̄ω
dω =

9Nh̄2kBβ
2

ω3
D

∫ ωD

0

ω4e−βh̄ωdω

This is a standard integral, and the resulting heat capacity is

C → 12π4

5
NkBT

3 k3
B

h̄3ω3
D

with a characteristic T 3 dependence.
For high temperatures

C → 3NkB

which is the result of equipartition theorem.
In real solid, the dispersion relations can be much more complicated. In fact, there are two distinct types
of oscillations - lattice oscillations, which symbolizes movement of the ions in the lattice so that the whole
lattice structure oscillates, and so called optical modes, when only ions inside a unit cell oscillate, but
centre of mass of the unit cell remains stationary. Usually, the optical modes have quite narrow range of
frequencies, and are often well modelled by Einstain model, while the other (also called acoustic modes) are
better modelled by the Debye model. Since optical modes are also more energetic, at low energies, these
are not excited and the vibrations are purely acoustic, which means that the Debye model is precise.
The Debye model describes the behaviour of heat capacity well until we reach so small temperatures that
the addition to heat capacity from electrons around the Fermi surface stops being negligable.
One final note is on the heat expansion - so far, the oscillations we supposed were harmonic, which have
overall zero expansion. But, for big expansions, we start to have unharmonic effects, which are responsible
for the expansion.

5.2 Quantum Statistics

There are generally two types of quantum particles - fermions and bosons. The main difference is that
fermions follow the Pauli exclusion principle and therefore only 1 fermion can exist in a specific state.
There is no such limitation for bosons. If we now assume that some system with number of states is
connected to a reservoir at constant temperature and can exchange energy and particles with this reservoir,
we arrive at two characteristic different behaviours for non-interacting fermions and bosons.

5.2.1 Fermi-Dirac Distribution

Consider some state of the system with energy ε. Because of Pauli exclusion principle, there are only two
possibilities for the number of fermions in this system - 0 or 1. Using (38) with Nmax = 1, we obtain

N =
e−β(ε−µ)

1− e−β(ε−µ)
− 2e−2β(ε−µ)

1− e−2β(ε−µ)
=

e−β(ε−µ)(1 + e−β(ε−µ))

(1− e−β(ε−µ)(1+e−β(ε−µ)))
− 2e−2β(ε−µ)

(1− e−β(ε−µ))(1 + e−β(ε−µ))
=
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=
e−β(ε−µ) − e−2β(ε−µ)

(1− e−β(ε−µ))(1 + e−β(ε−µ))
=

e−β(ε−µ)(1− e−β(ε−µ))

(1− e−β(ε−µ))(1 + e−β(ε−µ))
=

e−β(ε−µ)

1 + e−β(ε−µ)

Therefore, we have the so called Fermi-Dirac distribution, which gives the average occupacy of a state with
energy ε, for a system with chemical potential µ as

N = fFD(ε, T ) =
1

1 + e
ε−µ
kBT

(43)

We can also determine the grand-partition function as

Z =

1∑
N=0

e−βN(ε−µ) = 1 + e−β(ε−µ)

5.2.2 Bose-Einstain Distribution

Consider the same system as above, but now for bosons. Since there is no limit on how many bosons can
be in one state, we use (38), but with Nmax →∞ this time. This leads to

N → e−β(ε−µ)

1− e−β(ε−µ)

and therefore we have the Bose-Einstain distribution

N = fBE(ε, T ) =
1

e
ε−µ
kBT − 1

(44)

The grand-partition function is

Z =
1

1− e−β(ε−µ)

In both cases above, for a system that consists of multiple states with different energies ε, the statistics are
exactly the same, only the ε energy is now a variable.

5.3 Electron Gas

Electrons are fermions, and in the metal, they can be viewed as non-interacting free fermions (interactions
are small and effectively come out just as a effective mass of the electron). If we have a solid that is filled
with electrons at the temperature T = 0, the most energetic electron sits at energy level called the Fermi
energy Ef . If we then add another electron, its energy will be this Fermi energy. Therefore, the change in
the energy of the system will be

dU = Ef = µdN

As we added one electron, dN = 1, and therefore

Ef = µ (45)

Therefore, if we connect two metals, their Fermi energies have to be at the same level - they can exchange
both energy and electrons.
The electrons are free particles, and they have degeneracy 2 due to their spins. Therefore the density of
states is

g(k)dk = 2
V k2

2π2
=
V k2

π2

In terms of energy

E =
h̄2k2

2m∗

dE =
h̄2

m∗
kdk =

h̄2

m∗

√
2m∗E

h̄2 dk

Hence

g(E)dE =
V

π2

2m∗E

h̄2

m∗

h̄2

√
h̄2

2m∗E
dE =

V

2π2

(
2m∗

h̄2

) 3
2 √

EdE
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From the definition of Fermi energy, the total number of electrons in the system is

N =

∫ Ef

0

g(E)fFD(E, 0)dE

For zero temperature, Fermi-Dirac distribution becomes a step function, with 1 for all E < µ = Ef and 0
for all greater energies. Therefore

N =

∫ Ef

0

g(E)dE =

∫ Ef

0

V

2π2

(
2m∗

h̄2

) 3
2 √

EdE =
V

2π2

(
2m∗

h̄2

) 3
2
∫ Ef

0

√
EdE =

=
V

2π2

(
2m∗

h̄2

) 3
2 2

3
E

3
2

f =
V

3π2

(
2m∗Ef

h̄2

) 3
2

This can be rephrased using the Fermi wavevector kf

h̄2k2
f

2m∗
= Ef

to be

k2
f =

(
3π2N

V

) 2
3

(46)

and hence

Ef =
h̄2k2

f

2m∗
=

h̄2

2m∗

(
3π2N

V

) 3
2

The total energy of the system is

U(T ) =

∫ ∞
0

g(E)fFD(E, T )EdE

At T = 0

U(0) =

∫ Ef

0

g(E)EdE =
V

2π2

(
2m∗

h̄2

) 3
2
∫ Ef

0

E
3
2 dE =

3

5

V

3π2

(
2m∗Ef

h̄2

) 3
2

Ef =
3

5
NEf

therefore the average energy per electron is

< E >=
3

5
Ef

We can also find the pressure response of the system, which is called the degeneracy pressure, as

p = −
(
∂U

∂V

)
S

= −3

5
N

∂

∂V

h̄2

2m∗
(
3π2N

) 2
3 V −

2
3 =

6

15
N

h̄2

2m∗
(
3π2N

) 2
3 V −

5
3 =

2

5

h̄2

2m∗
n
(
3π2n

) 2
3

where n = N
V is the number density of the electrons. Or, in terms of Fermi energy

p =
2

5
nEf (47)

5.3.1 Heat Capacity of Electron Gas

Usually, the Fermi energy is a very high value, relative to the thermal energy. Therefore, we can approximate
that any thermal excitations that happen do so only very close to the Fermi energy level, and have reach
about kBT .
Therefore, the number of electrons involved in these excitatitons is approximately

N = g(E)dE ≈ g(Ef )kBT

The energy is gained by these electrons, and therefore the total change in internal energy is

∆U ≈ NkBT ≈ g(Ef )k2
BT

2 =
V

2π2

(
2m∗

h̄2

) 3
2 √

Efk
2
BT

2 =
2

3

N

Ef
k2
BT

2
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This is an approximate solution, the exact solution is

∆U =
π2

4

N

Ef
k2
BT

2

Hence, the heat capacity

Ce =
∂(U(0) + ∆U)

∂T
=
π2

2

N

Ef
k2
BT

Therefore, for low values of temperature, the overall heat capacity of a solid is

CT = Cphonon + Ce = α
T

TF
+ β

(
T

θD

)3

where θD is the Debye temperature, defined by kBθD = h̄ωD and TF is the Fermi temperature, defined by
kBTF = Ef .

5.4 Quantum Gases Revisited

With our quantum particle distributions, we can now reformulate the assumptions for photon and phonon
gases. For photon gas, we declare dispersion relation

ω = ck

and degeneracy 2 for 2 polarizations. Then, the density of states is

g(ω)dω =
V ω2

π2c3
dω

Since the photons can be created at will, µ = 0. Therefore, the total energy of a photon gas is

U =

∫ ∞
0

g(ω)h̄ωfBE(h̄ω, T )dω =

∫ ∞
0

V ω2

π2c3
h̄ω

eβh̄ω − 1
dω

We can see that this is the same result as before, but we derived it in a theoretically clear way, without
having to neglect any zero point energies. Similarly for phonon gas, we have dispersion relation

ω = vk

and degeneracy 3, so

g(ω)dω =
3V ω2

2π2v3
dω

And thus

U =

∫ ωD

0

h̄ωg(ω)fBE(h̄ω, T )dω =

∫ ωD

0

h̄ω
3V ω2

2π2v3

1

eβh̄ω − 1
dω

Which is again exactly analogous.

5.5 Bose-Einstain Condensation

For boson gas at some very low temperature, all the bosons tend to be in the ground state of the system.
This means that we can no longer describe the distribution of bosons by continuous density of states. The
temperature when this occurs is called the critical temperature and the state of matter when nearly all
bosons are in the same ground state is called the Bose-Einstain condensate. It can be shown that near the
low temperatures, the fraction of bosons in the ground state, N0

N is

N0

N
= 1− T 2

T 2
C

where TC is the critical temperature of the boson gas.
Since nearly all the particles in the system are in the same state, Bose-Einstain condensate has many
perculiar properties, but these are not further explored here.
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