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1 Statistical Mechanics and Microcanonical Ensembles

1.1 Probability Refresher

Let X be a random variable and P(X = x) the probability of X taking a value x upon measurement. The
total probability over all possible values of £ must sum up to one, so for discrete number of possible values

Y P(X =umz)=1

this is also called the normalization of the distribution P.
For continuous range of possible values R(X)

/ P(X =)z =1
R(X)

<x >= ZxZP(X :LUZ)

i

The mean is defined as

for discrete range and
<z >= / 2P(X = z)dz
R(X)

for continuous range. The variance is defined as the mean square distance from possible values of X from
the mean, i.e.
Var(X) =Y (zi— <z >)’P(X = ;)
for discrete range and
Var(X) = / (z— <z >)’P(X = x)dx
R(X)

for continuous range.
Also, for the mean of a function of a random variable f(z), we have

< @) >= S F@)P(F(X) = f@) = 3 F@) P(X = ;)
or, for continuous case
< f(x) >:/ f(x)P(X = x)dz
R(X)
Therefore, we can rewrite the variance relation as

Var(xz) = Z(xz— <z >)PP(X =)=

=Y #P(X =w;)-2<a>)Y z;P(X =x))+ <> P(X =u)
Using the definition of mean and normalization, we have
Var(z) =<2? > -2<z>*+ <o >’=<a2?> - <z >?

The standard deviation is defined as

0p =/ Var(z) = V< 22> — <z >2

and it is the measure of the spread of distribution P in the direction of x.
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1.1.1 Bernoulli Trial

Consider that the measurement of X can result only in two possible values - 0 with probability P(X = 0) = ¢
(sometimes nicknamed failure) and 1 with probability P(X = 1) = p (success).
Therefore, the distribution is discrete and has following parameters

prg=1,<z>=1p+0¢=p,< 2’ >=1%p+0%¢=p,0. = Vp—p*> = V/p(1 — p) = /g

This form of random variable is called the Bernoulli trial. Now, consider that we perform the trial inde-
pendently n times in a row. Independently means that one trial does not influence the other in any way.
Then, the probability of k trials resulting in a ”success” is

P(n7k) = ( Z >pkqn—k

as the trials are perfectly symmetrical and we need to account for interchanging them. This is also a
distribution, of a new variable B,, which goes from 0 to n and is called the binomial distribution. It has
following properties

<k >=np, < k* >=np(np + q),0r = /1pq

Hence, the fractional standard deviation is

Ok q

<k> \np

which decreases as the n increases. Therefore, the distribution becomes relatively narrower as we increase
n.
1.1.2 Conditional Probability

The probability of event A happening (event A being a set of values of X that satisfy certain condition) if
we know that event B has happened is

P(ANB)

PAIB) = =55

where P(A N B) is the probability of A and B both happening simultaneously and P(B) is probability of
B happening.
For independent events, it makes sense that P(A|B) = P(A), which leads to

P(AN B) = P(A)P(B)

Also, for independent events, the outcomes are different, hence AN B = (.
For either of two events happening, we have

P(AUB) = P(A) + P(B) — P(AN B)

And thus for independent events, P(AU B) = P(A) + P(B).

1.1.3 Bayes’ Theorem

Consider two events, A and B. These events can be partitioned into sets that do not intersect and are thus

independent new events as
A=(ANB)U(ANB)

where S’ denotes the complement of set S on some set that includes all possible outcomes. As an event
can either occur or not occur, we must have

P(S")+ P(S) =1

Hence
P(S"y=1-P(9)

Since the events AN B and (A N B’) do not share any element, they are independent and thus
P(A)=P(ANB)+ P((AnB")) = P(A|B)P(B) + P(A|B"YP(B") = P(A|B)P(B) + P(A|B')(1 — P(B))
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Similarly, we could transform
P(B) = P(B|A)P(A) + P(B|A")(1 — P(A))
Thus, we can say that probability of B given that A happened is

P(AN B) P(A|B)P(B)
PBIA) = =50~ = PUAB)P(B) + P(AB)(1 = P(B))

This is called the Bayes’ theorem, and enables us to find probabilities with exchanged causality direction.

1.2 Classical Laws of Thermodynamics
Classical laws of thermodynamics in the differential form are as follows. The first law is
dU =TdS — pdV (1)

where dU is the small change in the internal energy of the system, T is the temperature of the system, d.S
is the small change in the entropy of the system, p is the pressure in the system and dV is the small change
in volume of the system.

The second law is

ds >0 (2)
The third law is
lim S =0 (3)
T—0
and applies even inversly
lim T =0
S—0

The classical thermodynamics tries to make prediction about the system given that it is in thermal equilib-
rium, but it needs additional definition for this equilibrium (which is the zeroth law of thermodynamics).
It usually uses somewhat empirical equations of state to derive system’s behaviour, but these equations of
state themselves are not derivable using just the thermodynamics methods.

These were some of the reasons why statistical mechanics were developed. Statistical mechanics can derive
a reasonable definition of both entropy and thermal equilibrium, and can be used to derive equations of
state only from considering the energies of possible states of the system.

The importance of statistical mechanics is further amplified by the fact that it can be used in quantum
predictions, as the nature of statistical mechanics is probabilistic.

1.3 Microstates and Macrostates

In statistical mechanics, we usually model the system as a collection of smaller systems which change
their states. Then, the ordered set of states for each specific component of the system would be called
a microstate of the system. But, we are hardly ever able to measure the properties of each component
system. Usually, we can measure only some bulk properties that are created by all the component systems
together. Then, all microstates that would lead to the measurement of the same value of the given bulk
property are called the macrostate of the system. For big systems, each macrostate corresponds to very big
number of possible microstates.

In this module, and in statistical mechanics in general, we are most interested in the macrostates of energy,
i.e. the collections of microstates that produce the same overall value of energy of the system.

2 Foundations of Statistical Mechanics

The theory of statistical mechanics is build on several assumptions/laws. First is the definition of thermal
equilibrium. The thermal equilibrium occurs if each of the microstates of the system is equally likely.

The second assumption is that the dynamics of the system are such that the microstate of the system is
constantly changing.

Final assumption is that if given enough time, the system in thermal equilibrium will at least for some time
be in each possible microstate and that the time spent in these microstates is on average equal.

The last assumption is also called the ergodic hypothesis.

The combined consequence of these assumptions is that the macrostate of the system that is represented
by more microstates tends to be more probable than one that is represented by less microstates.

In statistical mechanics, three system compositions/situations are usually considered
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1. Microcanonical Ensembles
e Microcanonical ensemble is a set of systems, each of which is isolated from each other
2. Canonical Ensemble

e Canonical ensemble is a set of systems, each of which can exchange the energy, but not the
particles (microstate positions) with some very big reservoir.

3. Grand-Canonical Ensemble

e Grand-Canonical ensemble is a set of systems that can exchange both energy and particles with
a very big reservoir.

2.1 Microcanonical Ensemble

Say that we have three identical quantum harmonical oscillators with natural frequency wy. Suppose that
we are interested in a macrostate when the total energy of this system is %hwo. As energy of each oscillator
is E, = hwy (n + %), this means that there is energy hwy that either of the oscillators can have. Therefore,
there is a total of three possible microstates - each for one oscillator having energy %hwo and the rest having
energy %hwo.

For the general energy (n + %) hwy in the system, we then distribute n hwg energy packets between the
three systems. This is identical as permutating 2 system separations and n of these bundles. The total
number of microstates corresponding to this is

where n! =n x (n — 1) x ... x 2 x 1 is the factorial operation. Therefore

0 (Mt +1)
2

Say that we fix the energy as n = 5, so {2 = 21. Then, we can define a different macrostates of the system,
each corresponding to a different number of oscillators in the ground state. Clearly, the maximum value
of this variable is 2, the minimum is 0. But, what are the corresponding numbers of microstates? For 0
oscillators in ground states, we need each oscillator to have at least one energy bundle. Therefore, we are
left with n —3 =5 — 3 = 2 energy bundles that can freely be changed between the three oscillators. The
number of microstates is therefore
Qp = ((n—3)+2)! :4—!:6
(n —3)!2! 4

Now, consider the case when one oscillator is in a ground state. This means that two energy bundles are
reserved for the other oscillators. Therefore, for one specific oscillator at a ground state, there is

o, =2+ 4

:7_—:4
: (n—2)111 3

microstates for the other two oscillators. But, since it does not matter which oscillator is at the ground
state, the total number of microstates corresponding to this setup is

91:3XQL1:12

Finally, for the case of two oscillators in a ground state, there is only one microstate for each oscillator (all
energy left is stored in the one remaining oscillator), and therefore

Q=3

Therefore, if this system was in thermal equilibrium, we would expect that the most probable state would
be for 1 oscillator to be in a ground state, with the probability of %
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2.2 Entropy & Temperature

In thermal equilibrium, we use Boltzmann’s definition of entropy
S=kplnQ (4)

where € is the number of microstates for a given macrostate of entropy and kp is the Boltzmann constant,
kp~138x10"23 JK!.

From this definition of entropy, it is also clear why the second law of thermodynamics (system reaches the
state of maximum entropy, dS > 0) corresponds to the statistic mechanical rule that the system adopts
the macrostate with biggest number of microstates - bigger number of microstates corresponds to bigger
entropy.

Consider now two isolated systems, one with total number of microstates 21, the other with number of
microstates 5. What is the number of microstates of the combined system? For each microstate in
system 2, there is 1 microstates in system 1, and vice-versa (since the systems can change the microstates
independently). Therefore, the total number of the microstates of the combined system is

Q= Ql X Qg
Hence the total entropy of the combined system is
S = kB InQ = kB ln(Ql X Qg) = kB 11191 -+ k‘B ]IIQQ = Sl + Sg

Thus, for independent systems, the entropy is additive.

2.2.1 Free Expansion

Consider a gas in volume Vj that is free to expand into another empty volume Vj, so that the total volume
after expansion is 2V;;. What is the change in entropy? For each microstate in the original gas, there is
now 2V microstates in the expanded state, as each of the particles can have exactly the same position and
momenutum, but in the second volume instead of the first. Thus, the number of microstates after expansion
is Qo x 2V, where Qq is the original number of microstates. Therefore, the change in entropy is

AS =kpln(Q x 2V) —kpInQy = kpn2" = NkpIn2

2.2.2 Definition of Temperature

Now, consider two systems that can exchange energy. Lets say we are measuring the energy macrostate.
What is the total number of microstates, corresponding to some total energy E? Let the energy of the first
system be F and the energy of the second system F5. Hence F = Fs + E7, and more importantly for fixed
E

0=dEy +dE;

dE, = —dFE;

which just means that all energy lost from system two must be gained by system 1.
On the example of the harmonic oscillators, we have seen that the number of accesible microstates depends
on the energy available to the system. Therefore, we can write the number of microstates available in

system 1 as
Ql = Ql(El)

and similarly
Qy = Qa(Fy)

The total number of the microstates of the two system is then
Q= Q(E)Q(E?)

Since we can determine Fy from E; (Ey = E — E7), to find the maximum of this number (which will
correspond to the most probable energy macrostate between these two systems) occurs at

dQ

0

dFE,
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This means that

Ay Qs s doy dBs d doy d dQs
0= S0 P SR o P S Wi i SIVIRY  culet S o Pcae SN ¢ Wi
dE, YaE, TtaE, T aE dB, T dE,  2dE, | dE,
Therefore, at thermal equilibrium
sy o,
O —2 = Qy—1t
YaE, T TR,
1dQy  1d

Qo dEy  QdE,

Therefore, for a system at thermal equilibrium with its surroundings

where [ is some constant shared by all systems in equilibrium with the same surroundings. This can be
rewritten as

dlnQ 1 dkpIlnQ 1 dS

dE kg dE  kgpdE

In classical thermodynamics, systems at thermal equilibrium have a common temperature. If we want to
define temperature in statistical mechanics so that it behaves in the same way as in classical mechanics,

we need to consult the first law of thermodynamics in this context. We know that the systems considered
here are fixed in volume (otherwise 2 would depend on the volume of the system as well), hence the first

law states
1_(98
T \oU v

For our case, since the S is a function of U = E only and V is always fixed, we can write

8=

1 ds

T~ dE
By comparison with the previous result for C, we find that

1

ﬁ:kBT

And thus, we have our definition of temperature in statistical mechanics, that is defined so that it reduces

to classical temperature in classical thermodynamics. The definition is

1 dlnQ
kgT =~ dE

(6)
We quite often refer to the constant S directly, instead of reffering to temperature.
2.2.3 Measuring Entropy
Generally speaking, entropy is very hard to measure. Classically, we have relation
dU =TdS

at fixed volume. We can measure
dU = CydT

where C'y is the heat capacity at fixed volume. Therefore
CydT =TdS

Therefore, the change in entropy (but not its absolute value) can be found as

T

QCV
AS = —-dT
A
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2.2.4 Gibbs Entropy Formula

Gibbs entropy formula defines entropy even for systems out of equilibrium as

S:_kBZPilnPi (7)

7

where sum runs over all the microstates of the system and P; is the probability of the system existing in a
given microstate. In a thermal equilibrium,

and thus

Since the sum runs over all microstates

1 1
S = —kgﬁln (Q) Q=—kp(—InQ) =kplnQ

Therefore we see that the Gibbs entropy formula reduces to the Boltzmann entropy formula for systems in
equilibrium.

3 Canonical Ensembles

Lets have a collection of systems of fixed number of particles N and fixed volume V. Then, let this ensemble
of systems be in a contact with a large reservoir with energy E — FE;, where F; is the energy of the ith
macrostate of the ensemble (so that the total energy is U = F — E; + E; = E).

Now, lets have the system in a thermal equilibrium with the reservoir, where 7' (and/or f3) is fixed both
for the ensemble and the reservoir. The ensemble in this state and setup is called the canonical ensemble.
Now, we are interested in the probability that the ensemble has energy F;.

The total number of microstates for both the reservoir and the ensemble is

Q= Q. (E)Q(E — E;)

where €2, is the number of microstates of the ensemble and €2,. is the number of microstates of the reservoir.
The probability of system having energy FE; is then a function of this total number of microstates. Since
the reservoir has energy E relatively big and a very big number of possible places for the energy, we can
approximate

So
P(E) = CQU(E - Ey)

where C' is some constant.
To find Q(F — E;), consider a Taylor expansion of In Q(F — E;)

dIn Q(FE)
InQ(F - E;)~InQ(FE) - ——E;
DB~ By) = nQ(E) - S
But, from our definition of temperature
dln Q(E) _5
dE

Hence
InQE - E;) ~InQ(E) — FE; =In (Q(E)e—BEi)

Dropping the approximation sign
QE — E;) = Q(E)e PP

Hence, the probability of system having energy F; is

P(E;) = CQ(E)e PP
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Since CQ(FE) do not depend on the energy of the system F;, we write them together as a constant % SO

e~ BEi
P(E) = ®

This is called the Boltzmann distribution, and constant Z is called the partition function.
Since the system has to have some energy (zero energy is still a state, only with E; = 0), the overall
probability of system having some energy must be equal to 1, i.e.

> P(E)=1

‘Which means that
e~ BE;

Zzzl

i

and therefore

Z=Y eon (9)
i
and thus we have our definition of partition function.

3.1 Two State system

Consider now a system that can exist in tow states of energies - either it has energy e or energy 0. The
partition function for this system is

Z=eP0pePe=114eFe
And thus the Boltzmann distribution is
e PE

P(F)= —+
(B) = 1~
The expectation value for the energy of the system is

_ ee—Pe _ €
1+ eBe 14 ebe

<E>=P(E=0)x0+P(E=¢)

Therefore as T — oo (and 3 — 0), < E >— §, which makes sense (the system changes swiftly from energy
0 to € and back). Also, as T — 0,  — 00, < E >— 0, which is also reasonable.

Here, we calculated for the expectation value of < E >. Because the reservoir is constantly changing its
microstates, we can assume that the observed value of total energy U will be simply

U=<FE>

We could then also calculate the heat capacity

oU d e dg d e 1 1 e\’
Cy = —=— = —— = — — Be = knB2 Be
VT OT ~dT1+ePe  dT dB 1+ ePe kBT2€( (1+ePey2” 6) &P <1+eﬂe> ¢

This can be rewritten in terms of hyperbolic functions as

2
6’66 1 k3ﬂ262

€% 4 cosh? (%) 4 cosh? (%)

CV = k3ﬁ2626’8€ = k3ﬁ262

Since 3?2 initially increases faster than cosh (%), there exists a peak of maximum heat capacity. This is

called the Schottky anomaly.

10
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3.2 Equipartition Theorem

Equipartition theorem states that for system where energy states are near continuous (which is usually close
to the high temperature classical limit of thermodynamics) and where the energy of the states depends on
a square of some variable taking any value from —oo to oo, the average energy of the system is independent
of the specific state and only depends on the temperature.
For example, imagine a classical monatomic gas. Each molecule in such gas has only the kinetic energy,
which is 1

T= §m(v§ + vi + v2)
where m is the mass of the atom of the gas and v, /, . are the different components of speed, each of which
can go from —oo to oo.
Similarly, the potential energy of a harmonic oscillator in 1D goes as

1
V = §k$2

where k is the spring constant and z is the displacement from the equilibrium position, again going from
—0o0 to oco.

Therefore, we see that setup of the equipartition theorem is quite a common situation. Now, we need to
employ the methods of statistical mechanics to progress.

Lets say that the energy of a part of the system depends on n independent variables as

2 2 2
E=aa127 +ogzs + ... + anz;,

Therefore, the partition function is obtained by summing together values for each possible value of each
variable, which can be achieved by integral

Z :/ / / e P Zrﬁmﬁdmda@...da%

The exponential function can be split into products as

/ / He foi Zldacl dx,,

This means that the integral can be factorised as

n [e'e) 5
Z = H/ e Py,
i=17 7~
Now, we can solve just the one integral as

o 2
I, = / e_BO‘””’id:Ei

— 00

Substituting y; = /Ba;z;
e ¥ dy;

2

1 o) o] o)
P 50[1' /;oo e_y?dyi [oo e_Z?dZi - ﬂai /700 /;oo e_(yiz_‘—zq?)dyidzi

Changing the coordinates to planar polar

1 oo p2m ) 0o 2 1 i
I} = / / e rdgdr; = i/ rie " dr; = —— {—e_”] ==
Bai Jo 0 Bai Jo Ba 2 0 Ba
Therefore
T
I; =
Ba;
Therefore

I/ () s w

11
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The probability of system being in an energy state with energy E as defined above is then given by

Boltzmann distribution s
pE) = C 0 e SR | T
A VA A

And the total energy of the system (which is the expectation value of the energy - the mean of energy) is

then
(o) oo oo o0 n 1 n - az
J= 1=

Each of the 0@-:5? terms in the sum is only integrated in one integral, and therefore we can factorize the

integral as
ZZ/ ozjsc By de H / _'Bo‘iw?daii

i=1,i#j

We have already done the second integral, but we have to do the first one.

o o R
Ji — / Oél.’L' e —Ba; x1 d.’L’ — az/ x; ({Eie_ﬁaixi) dl’z =
-0

— 00

1 7ﬁa-x2 > 1 > 7604-:1:2
= |T; 726%6 i _OOJF% 700@ i dx;

We can see that the bracketed term goes to zero, as e~Baiz] goes to zero much faster than z; diverges. The
second integral we already calculated as I;, so we are left with

1 Fis

28\ Ba;

Ji =

Therefore, we have

11 ™ - s 1
_Z;%\/ﬂzi_g#\/;‘wzj L 1\/57 QﬂZH\/;

We can see that the last product expression is nothing else but the partition function Z, and therefore

U= 5 ﬂ 7 Z = 5 ﬁ 5 D T (11)
This is a major result, because we discovered that the total energy of the system does not depend on the
exact nature of the energy (we do not need to know each a; to determine the energy of the system).
Therefore, we can make some predictions about the total energy of the system without the exact knowledge
of the system.
It should be noted that for a system of N, particles, each of which has n quadratic energy terms, there is
total of Nn quadratic energy terms for the whole system, and thus

U:Ng@T

and therefore we see that this total energy is classicaly extensive.

It should be noted however that Z is not a proper partition function, as it has dimensions - a proper
partition function needs to be dimensionless. This is particularly seen when trying to calculate other values
from this partition function (see later).

3.2.1 Gases

Gases can usually quite well fulfill the assumptions of equipartition theorem (there is almost no interaction
between the molecules/atoms of the gas, and the kinetic energy is quadratic with velocity). For monatomic
gas, we expect three quadratic energy modes (translation in three different directions), and therefore we
expect energy %kBT per particle of the gas. Hence, the molar heat capacity of monatomic gas is expected

to be (at constant volume)
3 3
Cy = NAikB = iR

12
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where R = 8.314 J mol 'K~ ! is the molar gas constant.

For diatomic gas, we also expect additional two vibrational modes (velocity and potential vibrational
energies) and three rotational modes. But, the rotational motion around the axis of the molecule is forbidden
for reasons from quantum mechanics, and the vibrational modes only start to excite at about 4000 K
(because the ground state energy of the oscillations is otherwise lower than the energy from equipartition).
Similarly, the rotation around the centre of the molecule only becomes available above about 250 K.
Therefore, for less than 250 K, the molar heat capacity of diatomic gas is %R, for 250 - 4000 K, the molar
heat capacity is kT (the two additional rotational modes are available) and after that ZkpT (vibrational
modes).

For gases with more atoms, the vibrational modes are again supressed, but from the turn on point three
rotational modes are available, so for common range of temperatures, the molar heat capacity is 3R.

3.2.2 Metals

We can imagine an atom of metals as a particle sitting in a harmonic potential centered on its place in the
crystal lattice. There are 6 total energy modes - three translational and three rotational. Therefore, we
expect the molar heat capacity to be 3R.

3.3 Partition Function

So far, we only used the basic derivations of statistical mechanics, but the methods were essentially classical.
But, we can completly reformulate the thermodynamics using pretty much only the partition function. To
do this, we first need to remember the basic functions of state for a thermodynamical system

3.3.1 Classical Functions of State

Since for canonical ensemble T and V are fixed, they are effectively not a functions of state, but only the
variables. Also, since particles are not exchanged, the number of particles N is also only a variable and not
a function of state.

The classical functions of state are then internal energy U, entropy S, pressure p, Helmholtz free energy
F, enthalpy H and Gibbs free energy GG. The internal energy is defined by statistical mechanics as

U= ZEiPi

where E; is the energy of ith microstate and P; is probability of system being in this microstate.
The entropy is defined by Gibbs formula

S=—kpy PilnP,

Helmholtz free energy is defined as
F=U-TS (12)

Pressure is classically defined from the first law of thermodynamics
dU =TdS — pdV
and change in Helmholtz free energy

dF =d(U —-TS)=dU —TdS — SdT =TdS — pdV —TdS — SdT = —pdV — SdT

__(9F
P==\av),

H=U-+pV (13)

which leads to

The enthalpy is defined as

The Gibbs free energy is defined as
G=H-TS (14)

13
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3.3.2 Partition Function Formulation

For canonical ensemble, we had

7z = Ze*’@E"'

Applying a derivative with respect to g
dz
i _FNe BEi — _ . o—BE;
Comparing this to the definition of internal energy for canonical ensemble
1
2B By

we then have
dz

>~ __z
dp v

and thus
1dZ  d(lnZ)
ZdB dpg
Thus, we can determine the internal energy directly from the partition function.
We can try to do the same for the rest of the state functions. For entropy, we can use Gibbs definition of

entropy and Boltzmann distribution

e PE: e~ PE: kp _BE,
S:—kBZ 7 ln( 7 >:—Z » e P (—BE; —InZ) =

U =

(15)

k k
_ 73 > BEe P 4 73 nZY e PP = kppU + kplnZ

So, we have
1dinZ

=kplnZ — — 1
S=kpln T dp (16)
Therefore, the Helmholtz free energy is
1
F=U-TS=U-T(kpBU +kplnZ)=U — kBTﬁU —kpTInZ
B
And therefore
F=—kgThhZz (17)

Sometimes, it is therefore easier to calculate the entropy from the definition of Helmholtz free energy as

U-F

S=—7F

Using the expression for pressure, we have

__(oF\ _ O(=kpTlnZ) T olnZ
P="\av),~ av s B\ Ty ),
Thus the enthalpy is

O0lnZ dlnZ OlnZz dlnZ
H = = kT — = kT T—-
Urpv =k V( oV >T g = [V< >T+

And Gibbs free energy

G:F+pV:—kBT1nZ+kBTv<‘W> :kBT[V<‘W) 1z
v ). . |

14
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3.3.3 Equipartition Revised

We have shown that the equipartition partition function was
N\ 2 1
) U

1 n
(Inm —Ing) — iglnai

Therefore
InZ =

|3

and

dinZ _ Edlnﬂ _n _ EkBT
g 2 dg 26 2

which is the same result as before, but obtained on three lines of almost trivial calculation. But, the results
for other variables are not very useful, because the Z constructed for equipartition is not dimensionless.

U=-

3.4 1D Harmonic Oscillator

The energy of a 1D quantum harmonic oscillator is given as

1
En = <TL+ 2> th

where wy is the natural frequency of the oscillator.
Therefore, the partition function is

oo

o0 o0
7 — ZefﬂEn _ Z o~ Bnhwo—Shwo _ ,— 5§ hwo Z (ef/;?hwo)”
n=0 n=0

n=0
We can recognize that the sum is the geometric series with ration e=#"~0 Therefore
i 1
Z e—ﬁhwgn - - (1 — lim e—ﬁhw(n+1)>

1 — e—Bhwo n— o0
n=0

But, the limit goes to zero, so

1 e~ 2Bhwo
1— e Phwo — 1 — g Bhuo

7 = e~ 3hwo (18)

The internal energy than can be derived as

h
InZ = —’8 0 n (1 — efﬁh“’o)
dinZ  hwgy 1 _Bh 1 e~ Phwo
Us——g5 =5 * 1= (") (Chen) = hwo |5+ 75
Hence the heat capacity
R e
VT oar 0 (1= o—Fhwn)?
_ dpB (1 — e~ Phwo) 4 g=Bhwo _ 1
_ 32 2 PR _ 32 2 —Bh 2
= —h7wge woﬁ (1 — e=Bhwo)?2 = —hiwpem T (—kp )W
So, we have
9 e~ Bhwo
Cv = kp(Bhwo) (1= Pn)2
For a large temperature, 8 — 0, so
1 — Bhwy) (1 — Bhwo)
Cy = ki (Bhusy)?— = kp(Bhwo)? ———> — k
v = kp(Bhwo) (1= (1= fhwo))? B(Bhwo) (Fhiog)? B

which is the same result as we would obtain by equipartition.

15



PX265 - Thermal Physics IT Formulae list and derivation

3.5 Degeneracy

In case that a state with the same energy can be occupied in multiple degenerate setups, then we need to
reflect this in the partition function - as the temperature rises, the states become all equally probable, and
thus more degenerate states will be likely more occupied than low degeneracy states.

This can be accounted for simply by treating each of the degenerate states as a state on its own (unless
the states are indistinguishable, which will be discussed later), so the partition function becomes

Z = Zgie*ﬁEi (19)
i
where g; is the number of degenerate states with energy FE;.

3.5.1 Degenerate 2-state System

Consider a two state system, with energies 0 and A. But this time, the energy level 0 has degeneracy g;
and energy level A has degeneracy go. The partition function is

Z = 916760 +92€7ﬁA =01 +9267BA
The internal energy is now
1dzZ -1 ~BA(_A) galePA A
[ — e —_ = =
ZdB g1+ gae AP g1+ gee P8 14 SrefB
In high temperature limit (5 — 0)
A A

U— —
91 g1
1+g2(1+BA) L+,
Hence, if go >> g1, then U — A. This can be explained by considering that at high temperature, any
state is approximately equally probable. But, if there is much more states with energy A (g2 >> g1), then

the average state is basically state 2 and thus the average enery is its energy, which is A.

3.6 Combining Systems

In thermodynamics, we usually deal with big systems consisting of many individual smaller systems. In
order to be able to create these combinations, we need to know how to combine the partition functions of
systems.

Lets number states of system 1 by ¢ and states of system 2 by j. Hence, the state of the combination of
the two systems can be expressed as state i, 7. The energy of this state is simply

E;;j = Er; + Ea;

where Fy; is the energy of the state 7 in the system 1, and analogously Es; is energy of state j in system 2.
The partition function then is

7 — Z Z e*ﬁEi,j _ Z Z e*ﬁ(EquEzj) — Z Z e*ﬁEue*ﬁEzj _ (Z €5E11‘> Z e*ﬁE'zj

But, we can recognize the bracketed expressions as partition functions of the component systems. Therefore
7 =71 Zs (20)

The combined partition function is therefore the product of the partition functions of the composite systems.
Similarly we see that any function of state that depends on InZ (such as energy, Helmholtz free energy,
entropy, pressure, etc.) is additively extensive (combined function of state is the sum of the composite
functions of state - for energy, this was effectively our assumption, so it should not be too surprising)

16
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3.6.1 Indistinguishibility

In the above derivation, we suggested that each combination of states (i,7) is distinguishable from each
other. This could apply even if the energy of some pair of states, say (i, ), was the same as energy of other
pair of states, say (k,1), as long as there is some property (such as spin) that differentiates the states from
each other. Then, this simply comes up as a degeneracy factor.

But sometimes some pairs of states are virtually indistinguishable. This tends to happen especially if
we combine identical systems, for example when modelling behaviour of N identical particles, each with
partition function Z;. Then, any specific state combination (4, 7,...) is indistinguishable from any state
which is specified by a permutation of indices i, j, .... Since there is N indices (N particles), the number of
permutations is N!. Since these states are indistinguishable, we must not count them more then once each.
Therefore, the combined partition function for such system is

7 = 1 —B(E1i+E2;+...) _ Z{V

e

3.6.2 3D Harmonic Oscillator

The harmonic oscillator in 3D is effectively a combination of three independent harmonic oscillators, each
in one perpendicular dimensions. These oscillations are each distinct, so the combined partition function

of 3D harmonic oscillator is
e—%,@hw

Zspsno = (Zipsuo)® = A= e phays
Hence
InZspsao =3I Zipsuo

and therefore Uspspo = 3UipsHo, as expected, and similarly for all other functions of state.

3.6.3 Spin-half Paramagnet

Imagine an atom with one unpaired electron. This electron has spin angular momentum component in the
z direction given as hs where s = :I:%.
The magnetic moment given by this spin is

1= —gups

where ¢ is the gyromagnetic ratio of the electron and pup = 22’} is the Bohr magneton. The minus sign is

to account for negative charge of the electron. Since g ~ 2, we can simplify this as

M~ FuB

The energy of an electron in a magnetic field B in z direction is
E=uB=FupB

Therefore, this electron in magnetic field forms effectively a two state system.
For a constant volume paramagnet, the first law of thermodynamics is

dU =TdS + dEy

where EFj; is the total magnetic energy stored in the orientation of electron spins. The macroscopic variable
measuring the overall magnetic moment of the paramagnet is magnetisation m, which points in the direction
of the magnetic moment. Since for aligned moment the energy is smaller and increasing the field causes
bigger energy well for aligned moments m, we have

dU =TdS — mdB (22)
Therefore, the change in Helmholtz free energy is

dF =d(U —-T8)=d(U) —TdS — SdT =TdS — mdB — TdS — SdT = —mdB — SdT

OF olnZz
m“(é‘B)T‘kBT( OB )T

17
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Since the paramagnet is a two state system (for one atom that is), the partition function is
Zy = e PrEB 4 PuEB — 9 cosh(BupB)

In a solid, all atoms sit in a distinct position given by crystallic lattice, and therefore are all distinguishable.
Therefore, the combined partition function for all N atoms of the paramagnet is

Z=(Z)"
And thus the magnetisation of the magnet is
dlnZ 81I1Z1 NkBT .
= kT = NkgT = 2sinh B = Nuptanh B
m = kg ( 3B )T B ( 3B )T Scosh(BupD) 2" (BupB)Bup = Npp tanh(BupB)

3.7 Thermodynamic Potentials

Lets now return to the second law of thermodynamics, that is dS > 0. This means that at the thermal
equilibrium, the entropy of the system is maximized.
The entropy is defined as

§=—kpy PilnP,

At the maximum value

oS
Vji:=— =0
1 op,;
Using the definition of entropy and assuming that we vary only some P; and P
) OP; 1 0P; 0Py 1 0P
0= —kp|—IP+P——2L+ ——"InP,+ P,——
V0 B{apjn 15 ap, Tap TR o,

Since

we can check that if we vary only some specific P; and P}, we have

o5 _
oP,
And thus
InP;+1=InkF,+1
or

P; = Py
Therefore, the probability of existing in each microstate is identical in thermal equilibrium. This applies
generally for all isolated systems. The case why we have probability distribution in canonical ensemble is
because the probability of the microstates of the system with the reservoir together is uniform, but since
the reservoir is bigger than the system, several microstates of the system-reservoir correspond to a single
microstate of the system only.

3.7.1 Systems with Fixed Temperature and Volume

The first law of thermodynamics for systems with fixed volume and temperature is (at equilibrium)
dU =TdS — pdV =TdS

The Helmholtz free energy is
F=U-TS

and its change is (at equilibrium)

dF =dU - TdS — SdI' =dU —TdS =0

18
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Therefore, the value of Helmhotz free energy is extremal at the equilibrium. To find the nature of this
extremum, consider more general form of first law of thermodynamics

dU =dQ +dw

where d( is the heat transfered to the system and dW is the work done on the system.
which can be rewritten as
dQ < dU

dQ <TdS

Since the volume is not changing, dW = 0, and therefore

dQ +dW —T1dS =dU —TdS =dF <TdS+dW —TdS =0

and we have
dFF <0

Therefore, the Helmholtz free energy reaches its minimum value at equilibrium.

By similar procedure, it can be shown that enthalpy is minimised for fixed S and p and that Gibbs free
energy is minimized for fixed T" and p.

The functions that are minimized in the equilibrium of a system are called the thermodynamic potentials.

3.7.2 Minimizing F

We can use our definitions of internal energy and entropy to minimise F' for constant V and T, finding
the minimum in the coordinate space of probabilities of microstates P;. This can be achieved by using
Lagrange multipliers, where our function to be minimized is F’

F=U-TS=Y EPi+kgTy PP,

and our constraint is

Y p=1
Therefore, we have
0
Vi % (ZEP +kBTZi:P¢1nPi - Azi:a> =0

where A is the Lagrange multiplier. This leads to

A—E;
kpT

By

Ay B
Vj: P; =eFsT le BT

Vi:lnPj+1=

A
. .. . |
Since A is just some constant, we can write e*s7 ~ = A and thus
PJ = Ae_ﬂEj

which we recognize as Boltzmann distribution. Therefore, our formalism is fully compatible with the
formalism of thermodynamical potentials.

19



PX265 - Thermal Physics IT Formulae list and derivation

3.8 Fluctuations

We expect the fluctuations in energy to be in order of standard deviation of the energy. As we defined in
the beginning, the standard deviation of a random variable is

02 =<a?> - < >?

So, for energy
op =< E*> - < E>?

We already know that the mean energy is the total internal energy of the system, but we need to determine
< E? >. This is defined as
<E*’>=)_ElP,
i

For canonical ensemble

1
<E?s= LY Ereon

7

d*z

But, consider il

d?Z  d? _pm d _BE; 2 ,—BE;

K2

Therefore
ez
- Zdp?

,» 1d’Z 1 (dZ
BT 7 T 72\ 4

But, we can notice one more thing. If we are determining the heat capacity

_ U _dpdU _ o d ([ 1dZ) 2o 1 (dZ ’ 1z _ 2 2
Car Tarag T 0 dﬂ( ch)_kBﬁ ( 7 (dﬁ) Tzap ) THE

< E%>

and thus

Therefore

O = \/ ]{JBCVT (23)

Which corresponds to approximate fluctuations magnitude of energy. Similarly, we could derive the fluc-
tuation in other state functions, but these usually depend on the specific energy distribution of E;s.
Importantly, if we consider a big system of identical particles with partition function

2
~ N!
The total energy of the system is

dNInZ; —InN!

= - N

U 03 U,

And thus iU iU
= — = 71 =
= =N =N

and

g = \/ijCVT = \/k‘BNCVlT
and

g kB
i T
U VG N

which means that the relative size of the fluctuations decreases as inverse square root of .

20
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3.9 Ideal Gases

For ideal gases, there is no interaction between the molecules. Therefore, the molecules are free particles,
usually enclosed in some volume V. This means that the wavefunctions of the particles are plane waves
with wavevector

Therefore the volume in k-space corresponding to one state is

B B (27)3 B (27)3
AV = Ak AkyAk, = T.L,L =5

where V is the real volume of the gas.
The energy of the molecule can be expressed as a function of k and is

s

2m*

E

where m* is the effective mass of the molecule. Since here we take only magnitude of the k vector, we
expect some degeneracy of states with the same k but different k. To quantify this degeneracy, we usually
use the density of states - we say that the number of states that have energy 22“2
interval dk is

or close to within small

g(k)dk

where g(k) is the density of states. Density of states is given as a derivative of the number of states that
have smaller energy than the one given by k. It can be also derived as follows. Consider a small spherical
volume in k-space, with radius from k to dk. The number of states in this volume (and thus our searched
number g(k)dk) is

1 Vk?

k)dk = Ark?dk—— = ——dk
9(k) TANAY, T o2

If there can exist D states with the same momentum, then the volume per state is decreased by a factor of

% and thus the density of states becomes

2
gk = DYE g
272

Thus, we have the energy of each state and the energy degeneracy of each state. So, the partition function
of one molecule of the gas is

o 7252
Zy = / g(k)e P o= dk
0
where the integral goes from 0 to infinity because k is magnitude, which only takes positive values. Sub-

stituting for g(k)
© DVE? _gn2
Z) = / 2V2 e Phmr dk
0 s

Substituting y = 4/ 25;* hk, we have

3
DV 2m* 2 o0 2
=== 27V d
! 2w2(57¥) /o e w

The second integral can be calculated similarly as shown before. Start by integration per partes

= o 9% Jy — [_y *yzro l/oo -v*g :l/oc -v*g
/Oyey 2¢ gt ¢ WTg ) W

I:/ e*dey

0

([ ra) ([ ) [ [
0 0 o Jo
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Changing to polar planar coordinates

< 13 2 7 e 2 s 1 21
I’ = / / e~ " rdpdr = f/ re " dr = — [—e‘r } =—
o Jo 2 Jo 21 2 0 4

/OO y2e ™V dy = vr
0 4

Thus

and

>
<

3 3
D 2m* \ 2 *kpT\ 2
2 Bh 4 21h

where Ay, is so called thermal wavelength

21h? h

)\ = =
th m*ksT  2rm kgl

Sometimes, we also mark
1
nQ =3~
Ath

where ng is the quantum concentration. At this concentration, the thermal wavelengths of the particles
start to overlap, and the particles’ states start to overlap, which has specific consequences for bosons and
fermions separately.

But as long as concentration is significatnly smaller then quantum concentration, the particles states do
not overlap as much and we can.

At these concentrations, we also assume that particles are not forced to the same state, and thus we can
effectively set D = 1, as every state accesible to the particles is occupied by a maximum of 1 particle.
Therefore, this semi-classical mode has partition function

3
Vv m*kpT\ 2
Zi= =V 25

! Al ( 2mh? > (25)

Now we need to combine the partition functions for N particles in the gas. But since these particles are

indistinguishable, we write
ZN
7 =21
N!

The logarithm of partition function is (using Sterling approximation)
InZa~NInZy —NInN+ N

The pressure of the gas is then

olnZz WAL oV kTN
= kT = kTN = kTN =
L < v >T B BN Ty %
we therefore have our ideal gas equation
pV = NkpT (26)

The Helmholtz free energy is
F=—kgTIhZ =—-kgTNInZ; + kgT(NInN — N)

The internal energy is

dB dg~— '2Td3 2 T

_dnZ _dlnzy 3147 _ 3.1 :gNkBT

Hence the entropy is

U-F

=77

3 5 Z
= 3Nkp +kpNInZ — kgpNInN + kpN = SkpN + kpN In (J\;)

22
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Therefore 5 v
=k 2o ()] -

This is called the Sackur-Tetroda equation. It is especially important since it differs from the entropy for
the case where the individual particles of the gas are distinguishable. For such case, Z = Z{¥, which does
not change U but changes F' to

F' = —kgTlnZ = -~NkgTInZ,

So
SlzéNkB—FNkBlHZl Nkp 3+ln ‘g
2 AL
3.9.1 Gibbs Paradox

Consider now two situations. In the first situation, we have two volumes of gas, each of volume V', separated
by a barrier. Suppose that in one volume, gas A is present, and different gas B is in the other volume.
Now, we remove the barrier between the gases. After the gases mix, how does the entropy of the system
change? We expect it to grow, as this process is irreversible. To calculate it precisely, first assume that
molecules of each gas are distinguishable.

The entropy of gas A before expansion is then

S;‘:NA]{ZB g+1n <V>

The entropy of gas B before expansion is

3 VAT
Sjg = NBkB _5 +1H <)\33)_
The entropy of gas A after expansion is
3 2V
S,,4f = NAk}B |:2 +ln (}\3 >:|
The entropy of gas B after expansion is

3 2V

Which means that the change in entropy is
AS' = Sf4f + S§3f — 8% — S5 =Nakpln2+ NgkpIn2

Similarly for indistinguishable molecules of two different gases (indistinguishable for each gas respectively,
but molecules of A distinct from those of B)

)
SA = NAkB |:2 +ln <NA)\3 >:|

)
SB = NBkB |:2 +ln <NB>\3 ):|

5}
=N |
Sar Akp [ +In (NAA?’)

5
SBf = Ngkp [ + In (NB)\B >:|

AS:SAf—SA+SBf—SB :NAk31n2+NB]€Bln2

So

Therefore, in this case, both approaches predict the same result, which is an increase in entropy, which is
what we expect.

Now consider a different situation, in with the same setup but now the gas A and gas B are identical in
the beginning, lets say that both volumes are filled with gas A. Now, we would expect that removing the
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barrier will not change the entropy, because the process should reversible (the gases do not in anyway mix
more - they are the same gases) Again, start by considering molecules of A as distinguishable, the initial

entropy is
3 \%
"=2N —+In(—
=2t [ +n (37

" 3 el
Sf—QNAk‘B |:2+1n )\?4

and final entropy is

Therefore there is a change in entropy and it is
AS' = 2N kpIn2

This is very bizzare. Fortunately, the second approach gives a reasonable result. For the particles being

indistinguishable
S =2Nakp |2 +1n (s
o AMB 2 NA)‘?ﬁl

But, the entropy after expansion is

5 2V 5 1%
— 9N 2im(—2 )| =2nN 2 i [ ——
51 aks [2 A (2NA)\5”4>} aks [2 i (NA/\:QZ;H

which predicts expected change in entropy
AS=0

Therefore, the particles of a gas must be indistinguishable for this situation to make sense.

4 Grand-Canonical Ensemble

4.1 Chemical Potential

Chemical potential p is defined as amount of energy generated by adding particles to the system. The first
law of thermodynamics with chemical potential becomes

dU = TdS — pdV + pdN (28)

where dN is the change in the number of particles. If there is multiple types of particles that can be added
to the system, then they have their respective chemical potentials.
From this definition, we can derive

_(w
=\~ ),
The change in Helmholtz free energy is
dF =dU —TdS — SdT = pdN — pdV — SdT
Hence
_(oF
"=\on ).,
The change in Gibbs free energy is
dG = dF + pdV + Vdp = pdN + Vdp — SdT
Hence
(o
"=\oN )+

Since G = U + pV — TS, for fixed p and T, U, V and S are all extensive with number of particles. So,
assume that we have some basic Gibbs energy of one particle G;. The Gibbs energy of N particles is then

G=NG;
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And the chemical potential of these particles is

_ ONG,
H= "N

=G

because G7 of one individual particle cannot depend on the number of particles N (for non-interacting
particles). Reexpressing this in terms of original Gibbs energy

= (29)

2l Q

4.1.1 Connected Systems

Consider two connected systems, which can particles, but are otherwise independent and have fixed, even
though possibly different, volumes and temperatures.
Also, assume that the total number of particles is fixed. So

N1 + Ny = N = const.
where Ny, is the number of particles in the first/second system. By the second law of thermodynamics
dS >0

The only thing that can increase the entropy here is the exchange of particles (since the temperature is
fixed). Also, because temperature is fixed, the internal energy of the systems is fixed (assuming that they
reached equilibrium). Hence

051 ) (852 )
dS = — dNy + | — dNs >0
(6‘]\71 U,v ' ON, U,v ?

For fixed volume and internal energy (temperature), we then have from the first law of thermodynamics

dU =0=TdS — pdV + pdN =TdS + pdN

b <8S>
T ON )y

Also, since the total number of particles is fixed
dN1 = —dN,

And thus " 1
dS = ——dN; + =dN; >0
T 1+ T 12>

H2 H1
— —— |dN1 >0 30
(-5 )ami > (30)
This means that if % > ‘T‘—z, then dN; has to be negative and thus particles are leaving the system 1 and
entering system 2. Similarly, if % > %, particles must be entering system 1 and leaving system 2. This
continues until the difference of these potentials is set to zero and

M H2
T, Ty

4.2 Grand-Partition Function

To derive the form of grand-partition function, consider a system in contact with a large reservoir so
that it can exchange energy and particles with the reservoir. The ability to exchange energy leads to the
temperature of both the system and the reservoir being fixed at the same value. The fixed temperature
together with ability to exchange particles than leads to the chemical potential of both the system and the
reservoir to be fixed at a common value.
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The entropy of the system then does generally depend on the number of particles in the system N; and
energy of the system F;. If the total energy and total number of particles is fixed as N and E respectively,
the entropy of the reservoir is

V., T,N v, r,U

The first law of thermodynamics is
dU =TdS — pdV + pudN

For fixed temperature, volume and number of particles

dU =TdS

o8y _1
oU TVVVN_T

For fixed temperature, volume and internal energy

0=TdS + pdN
a5 _ K
ON)rvy T
Hence E, N
S(E — Ei, N — Ni) ~ S(E, N)—?+MT’

Using Boltzmann definition of equilibrium entropy
S =kgInQ
We have

mQE — E;, N — N;) ~ nQ(E, N) — (Ei—/,LNi)zln(Q(E N)e B(E: #N>)

b
kT
Q(E — E;, N — N;) = Q(E, N)e 8Fi=nNi)

Again, we assume that for big reservoir, the probability of state of the system goes as

P(Ez,Nz) X Q(E — E“N — Nz)

And thus
PE. N e~ B(Ei—uN;) 31
(B, Ny = (31)
Where the normalization factor z is the grand-partition function
¥ — Z e~ B(Ei—pNi) (32)

Similarly with the case of canonical ensemble, where the thermodynamical potentail was the Helmholtz
free energy, we introduce the grand-potential, defined as

dg=U—TS — uN (33)

and is also sometimes called the Landau free energy.
Now, we need to determine the internal energy and expected number of particles from the grand-partition
function, similarly as before.

The internal energy is
e~ B(Ei—pN;)

U= ZEP ZE

And the number of particles
E;—pN;)

N = ZNP ZN
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Using the Gibbs definition of entropy

e/iE —uN;)

= —kgp Z PilnP;, = kg Z (—B(E; — pN;) —In Z)

e~ B(Ei—puN:) e~ B(Ei—uN:) e~ B(Ei—uN:)

—kBZBE —kBZﬁuNiT—kkBanZ 7
Using previously deﬁned relations and deﬁnitio; of grand-partition function Z
S =kppU — kppuN +kpln %
Hence
TS =kpTpU — kpTPuN +kpTIn% =U — uN + kgTIn &

And thus
bg=—kpThZ (34)

which is exactly analogous to expression for Helmholtz free energy in canonical ensemble, where the
Helmholtz free energy was the thermodynamical potential.

One important observation is that when y =0, & — Z and &g — F and the ensemble becomes described
by canonical ensemble formalism, even though the number of particles changes over time.

4.2.1 Grand-Partition Function Formalism

Similarly as before, we are able to derive several functions of state from the partition function. For example,
we have

aff ZﬁN —B(Ei—pN;) _ = BN
And thus ) 80@” O1n %
n
=5z on ~ T 5, (35)
For energy, we can use
ZZ—(Ei—MNi —B(Ei—puN;) ZEe—ﬁ(E #N)‘FNZN@ B(E;—pN:i) _ —~%(E — uN)
Therefore 1 0% ey
n
E-uN=-2 55 =05
And thus 51 f‘f O1n %
n n
E= T— — ——
pkp R a8 (36)

4.2.2 One State System

Consider a system in contact with large reservoir which has exactly one state with energy € such that every
particle that occupies this state has energy e. Therefore, if there are N particles in the system, the energy
of the system is Ne. Therefore, the grand-partition function of the system is

Nmaz Nmaa

o — Z e BEN—pN) _ Z o BN (e=p)

N=0
We can recognize this as geometric series, which equal to

1 — ¢ Ble=p)(Nmaz+1)

Z= 1 — e—Ble—n) (37)
Therefore, the average number of particles in the state (the average occupacy of the state) is
dln ¥ — e~ (Nmaz+1)B(e—p) e Ble—u)
N =kpT 8M = ksT 1 — e~ (Nmazt+1)B(e—p) ((Nmar + 1)6) + 1 — e=Ble=m) B

B e—Ble—n) (Npmaz + 1)67(Nma1+1)5(67u)
B 1— 6_5(5_#) - 1— e_(Nmam“"l)ﬁ(E_:“‘)

This will be useful for quantum statistics, which are discussed as last part of this module.

(38)
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4.3 Particle Conservation Laws

Consider now two special cases. First, a system with fixed temperature and volume where the particles can
be created freely. Since the particles can be created in without limitations, at the equilibrium, all functions
of state of the system must be independent of the number of particles.

Therefore, for Helmholtz free energy

OF

il =0

ON TV
Small change in Helmholtz free energy is

dF =dU —TdS — SdT' = —pdV + pdN — SdT

and thus

oFN

ON )y
This means that if the particles can be created without limitiations, the chemical potential in the system
must be p = 0.

Consider now a different situation, where there are two types of particles that can be created, and the
difference of number of these particles is kept constant, i.e. particles can be created only in pairs of the
two types. This is typical behaviour for example for creation of electron-positron pairs.

Since the difference of the particle number is conserved, if we write the difference of the particle number
as a state variable, we have a fixed V, T and N where

N=N, - N_

is the difference of the particle number, and thus the potential of thus system is the Helmholtz free energy
F(V,T,N). At the equilibrium
dFF =0

dU — TdS — SdT = 0
psdNy + p_dN_ — pdV — SdT = 0

Since V and T are constant
dN4

T _:0
N +u

But, from the definition of constant NV
dN =0=dN; —dN_

ANy 1
dN_

And thus
By = —H—

5 Quantum Gases

So far, we have only discussed the classical ideal gases. But, methods of statistical physics can be used
to described generalized systems of non-interacting particles that follow some creation rules even in the
quantum regime. First, we try to derive them in a sort of semi-classical way, in which they were probably
first derived.
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5.1 Semi-Classical Approach
5.1.1 Photon Gas

Photons are particles of the electromagnetic radiation. Because photons are massless, we can assume they
can be created at will. Therefore, they can be described as a canonical ensemble (1 = 0). First attempt at
modelling photon gas was to assume that each photon is approximately a 1D harmonic oscillator, oscillating
in the direction of its polarisation.

The energy of a harmonic oscillator at frequency w is

1 e~ Phw 1 1
U(w) = hw (2 T _e—ﬁhu> = fuw <2 t B 1>
The wavenumber of a photon is given as
k=

w
C

and photons can exist in two polarised states for each wavevector k. Therefore, the density of states for
photons uses D = 2 and is

Vi?
k)dk = 2——=dk
g(k) 534
Hence Vo? d Vi
w w w
g(w)dw = g(k(w))dk(w) 7'('262 ? = 7_[_203 dw

Then, the total internal energy of the photon gas is

E:/O g(w)U (w)dw

ELLAL (L 1,
YTV Ty 0 23 W\ T e 1 )

Planck, who came up with this relationship, then argued that since the photons can be created and
anihilated at will, it makes no sense to talk about the zero point energy, and therefore we should neglect
the % in the bracket (also, the integral diverges if we consider it). Then

[T R w3 i
v= o w2t efhw — 1 w

And the energy density

Substituting x = fhw, we obtain

h /OO 1 2 1 1 /°° z3
u = - —dr=u= dx
w23 Jo B3h3er —16h n23R3pY Jy et —1

7‘_4

This integral turns out to be a standard one, and equals 5. Therefore
™ it~ A (39)
U= ——- _
15¢30° c
where 54
k
o= LBB ~5.67W K tm™2
60c2h
Is the Stefan-Boltzmann constant.
This then leads to surface intensity
[=oT*
and maximum at
Amazl =0

where b =~ 2.898 mm K is the Wien’s displacement constant.

Historically, this is called the black-body radiation problem and it is one of the problems that lead to the
formulation of quantum mechanics. But even today, the same physics is still applied, for example to cosmic
microwave background, which is a very good black-body radiation, with temperature 2.726 K.
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5.1.2 Einstain Model of Phonon Gas

Phonons are virtual particles that create oscillations in the lattice of solids. Generally, we expect 3 po-
larizations of phonons per each wavevector of phonon, and we expect that they are free to appear and
disappear.
In the Einstain model, we assume that the frequency of all phonons is the same, and therefore the density
of states as a function of frequency is

g(w) =3No(w — wg)

where wg is the frequency of oscillations (Einstain frequency) and N is the total number of phonons in the
system (for each phonon, there is 3 states available).
‘We model each phonon as a 1D simple harmonic oscillator, again neglecting the zero point energy. Therefore

h
E=——
efhw — 1
Therefore, the total internal energy is

TLUJE

U= /0 Ew)g(w)dw = 3NE(wg) = 3NW

We usually substitute hwg = kpfg, where 0 is the Einstain temperature. Then

kgl
U=3N_2E (40)
ZE
e —1
We can also determine the heat capacity
35} 55}
ou kpbpeT 0Op 02 et
CV = 78T :3N7€E 2ﬁ :SNkBiTQ 79}5 b)
(6T B 1) (eT B 1)

This model is reasonably well for high and intermediate temperatures, but is not precise for small temper-
atures.
5.1.3 Debye Model for Phonon Gas

In the Debye model, phonons follow dispersion relation
w = vk (41)
where v is the speed of sound in the medium. The density of states is

3Vw?
g(w)dw = de

The phonons are again modelled as harmonic oscillators with no zero-point energy. The main difference to
previous models is that there is some assumed cut-off frequency, called Debye frequency wp, which limits
the oscillations of atoms. Then the total energy is

“p hw

The condition on Debye frequency is that the integral of density of states up to Debye frequency includes
all accesible states, so

/ g(w)dw = 3N
0

where N is the number of phonons. Then

3V wp o,
dw = 3N
2m2p3 /0 W

3
Vwy,

o2y 3N
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3 6N 203

Also N2
INw
dw = —
g(w)dw wdD
So, the total energy is
Nh [P 3
U= 9 3 / ,Brw dw
wy Jo  efv—1

Substituting z = fhw

INh 1 B g?
wy BARTJy et —1

The heat capacity is

oU  9Nh [P w3 INR2kpB? [“P  wiePhw
= — = ﬁhw 2 = — _—
C T w% /0 (P — 1)28 hwkpB*dw w% /0 (cFhw — 1)2dw

For low T, 8 — oo and

N 2 2 wp 4 N 2 2 wpD
o INKkpf / Wl = INRkBpS / wie= B g,
0 0

w3, efhw w3
This is a standard integral, and the resulting heat capacity is

1274

k?)
C— TNkBT?’ B

3,3
nCwy,

with a characteristic T° dependence.

For high temperatures
C — 3NkB

which is the result of equipartition theorem.

In real solid, the dispersion relations can be much more complicated. In fact, there are two distinct types
of oscillations - lattice oscillations, which symbolizes movement of the ions in the lattice so that the whole
lattice structure oscillates, and so called optical modes, when only ions inside a unit cell oscillate, but
centre of mass of the unit cell remains stationary. Usually, the optical modes have quite narrow range of
frequencies, and are often well modelled by Einstain model, while the other (also called acoustic modes) are
better modelled by the Debye model. Since optical modes are also more energetic, at low energies, these
are not excited and the vibrations are purely acoustic, which means that the Debye model is precise.

The Debye model describes the behaviour of heat capacity well until we reach so small temperatures that
the addition to heat capacity from electrons around the Fermi surface stops being negligable.

One final note is on the heat expansion - so far, the oscillations we supposed were harmonic, which have
overall zero expansion. But, for big expansions, we start to have unharmonic effects, which are responsible
for the expansion.

5.2 Quantum Statistics

There are generally two types of quantum particles - fermions and bosons. The main difference is that
fermions follow the Pauli exclusion principle and therefore only 1 fermion can exist in a specific state.
There is no such limitation for bosons. If we now assume that some system with number of states is
connected to a reservoir at constant temperature and can exchange energy and particles with this reservoir,
we arrive at two characteristic different behaviours for non-interacting fermions and bosons.

5.2.1 Fermi-Dirac Distribution

Consider some state of the system with energy e. Because of Pauli exclusion principle, there are only two
possibilities for the number of fermions in this system - 0 or 1. Using with Ny, = 1, we obtain

B e—Ble—p) 2¢—2B(e—n) B e Blemm) (1 4 e=Blemm)) 2¢—2B(e—p)
T l—eBlen) T —e 2l T (1= e Blempw)(te Py (1 —e=Ble—m))(1 4 e—Ble—n)

N
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e~ Ble—n) _ o—2B(e—p) efﬁ(ﬁu)(l — e*ﬂ(f*u)) e—Ble—n)

(1 — efﬂ(ﬁfﬂ'))(l + e*ﬁ(efl‘)) (1 — efﬂ(ﬁfﬂ'))(l + e*ﬁ(efl‘)) - 1 —+ 6*5(57#)

Therefore, we have the so called Fermi-Dirac distribution, which gives the average occupacy of a state with
energy €, for a system with chemical potential y as

1

N = fFD(E7T) = &
1+ e¥*BT

(43)
We can also determine the grand-partition function as
1
o — Z e PN(e=n) — 1 4 o=Fle=p)
N=0

5.2.2 Bose-Einstain Distribution

Consider the same system as above, but now for bosons. Since there is no limit on how many bosons can
be in one state, we use , but with N,,qz — oo this time. This leads to

e—Ble—w)

N = 1— e*ﬁ(efﬂ)

and therefore we have the Bose-Einstain distribution

1
N =fpp(eT) = ——— (44)
eFsT — 1
The grand-partition function is
¥ _ 1
- 1— 6_5(6_“)

In both cases above, for a system that consists of multiple states with different energies ¢, the statistics are
exactly the same, only the € energy is now a variable.

5.3 Electron Gas

Electrons are fermions, and in the metal, they can be viewed as non-interacting free fermions (interactions
are small and effectively come out just as a effective mass of the electron). If we have a solid that is filled
with electrons at the temperature T' = 0, the most energetic electron sits at energy level called the Fermi
energy F¢. If we then add another electron, its energy will be this Fermi energy. Therefore, the change in
the energy of the system will be

dU = Ey = pdN

As we added one electron, dN = 1, and therefore
By =p (45)

Therefore, if we connect two metals, their Fermi energies have to be at the same level - they can exchange
both energy and electrons.

The electrons are free particles, and they have degeneracy 2 due to their spins. Therefore the density of
states is

VEk: VK2
= 27 = —
In terms of energy
27,2
B hk
2m*
2 2
2m*E
dE =" g = I [P E g
m* m* h

Hence

3
V 2m*E m* h? Vo /2m*\2
E)E = — —1/ dFE = — VEdE
9(E) 72 B2 R2\ 2m*E 272 < K2 )
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From the definition of Fermi energy, the total number of electrons in the system is

Ey
N = /0 4(E) frp(E,0)dE

For zero temperature, Fermi-Dirac distribution becomes a step function, with 1 for all £ < u = Ey and 0
for all greater energies. Therefore

Ey Er v fom*\? vV o/o2m*\? [Er
N = — (2 - (T —
/O g(E)dE /0 53 ( 2 ) VEdIE 53 ( - ) /O VEdIE

LV (NP2 Vo (omEp)
- 272\ p? 375 3n2 h?

This can be rephrased using the Fermi wavevector k¢

R k2
f
=F
2m* f
to be
N\ 3
K2 = (gﬂzv) (46)
and hence
I R

3

N\ 2
— 2°7
C2m* 2m* <37T V>

U(r) = /Ooo 9(E) frp(E, T)EIE

The total energy of the system is

By vV o(ome\E P, 3V (2m Ep\? 3
3 f
U(0) = EYEdE = — | — E>dE = —-— E;=-NFE
0= [ aepar = (2 [Tt =2 (25 5 = g
therefore the average energy per electron is

3

We can also find the pressure response of the system, which is called the degeneracy pressure, as

oU 3.0 B 22 6 R 2 s 2R 2
- (&) =28y 2& 3r2N) Vi = N 3m2N) Vs =2 3r%n)?
P <av)s N v g BT N) 15N g (BTN 5o (377)
where n = % is the number density of the electrons. Or, in terms of Fermi energy
2
p=—-nky (47)

5

5.3.1 Heat Capacity of Electron Gas

Usually, the Fermi energy is a very high value, relative to the thermal energy. Therefore, we can approximate
that any thermal excitations that happen do so only very close to the Fermi energy level, and have reach
about kgT.

Therefore, the number of electrons involved in these excitatitons is approximately

N = g(B)dE ~ g(Ey)ksT
The energy is gained by these electrons, and therefore the total change in internal energy is

3
Vo /2m*\?2 2 N
AU ~ NkgT ~ g(E)k3RT? = — | =— | /E/k3T? = = k%72
B g(f)B 27T2<h2> frB 3EfB

33



PX265 - Thermal Physics IT Formulae list and derivation

This is an approximate solution, the exact solution is

2
AU = N e 2

Hence, the heat capacity

AU +AU) 7N ,
Ce = oT B ?EkBT

Therefore, for low values of temperature, the overall heat capacity of a solid is

T T\*
CVT = Cphonon + Ce - OéTiF + 6 <9D>

where 0p is the Debye temperature, defined by kgfp = hwp and Tr is the Fermi temperature, defined by
kpTp = E;.

5.4 Quantum Gases Revisited

With our quantum particle distributions, we can now reformulate the assumptions for photon and phonon
gases. For photon gas, we declare dispersion relation

w=ck
and degeneracy 2 for 2 polarizations. Then, the density of states is

Vw?
g(w)dw = oy L

Since the photons can be created at will, 4 = 0. Therefore, the total energy of a photon gas is

® Vw?  hw

m2c3 efhw — 1dw

U= /OO gwhwfpr(hw,T)dw =
0 0

We can see that this is the same result as before, but we derived it in a theoretically clear way, without
having to neglect any zero point energies. Similarly for phonon gas, we have dispersion relation

w = vk
and degeneracy 3, so
g(w)dw = %dw
And thus op Wb gy? )
U= /0 hwg(w) fee(hw, T)dw = /0 ﬁwmwdw

Which is again exactly analogous.

5.5 Bose-Einstain Condensation

For boson gas at some very low temperature, all the bosons tend to be in the ground state of the system.
This means that we can no longer describe the distribution of bosons by continuous density of states. The
temperature when this occurs is called the critical temperature and the state of matter when nearly all
bosons are in the same ground state is called the Bose-Einstain condensate. It can be shown that near the
low temperatures, the fraction of bosons in the ground state, % is

Ny 1 T?
ZD=1-
N Té

where T is the critical temperature of the boson gas.
Since nearly all the particles in the system are in the same state, Bose-Einstain condensate has many
perculiar properties, but these are not further explored here.
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