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1 Introduction

Linearity pervades mathematics: linear algebra is that branch of mathematics concerned with the study
of vectors, vector spaces, linear maps, and systems of linear equations, and is the language with which
we talk about linearity. It has extensive applications in the natural sciences and the social sciences, since
nonlinear models can often be approximated by linear ones.

Linear algebra originated from the theoretical study of the solutions of sets of simultaneous linear
equations. Using techniques from linear algebra, problems about systems of linear equations can be
reduced to equivalent problems about matrices. For instance{

2x+ y = 1
x− 3y = 2

is equivalent to

(
2 1
1 −3

)(
x
y

)
=

(
1
2

)
.

1.1 Number Systems and Fields

In order to talk about such problems in as general a setting as possible, we fix a definite starting point
and, assuming nothing else, work from there. Our starting point will be number systems, using the term
as a vague intuitive idea rather than giving any formal definition. The most used number systems in
mathematics are:

N ⊂ Z ⊂ Q ⊂ R ⊂ C
natural numbers integers rational numbers real numbers complex numbers

A perhaps less well-known example is that of the algebraic numbers A ⊂ C, i.e. those numbers which
are solutions of polynomials with rational coefficients:

√
3, i ∈ A, but e, π /∈ A.

1.2 Axioms for Number Systems

The term “axiom” has a variety of meanings in mathematics. Sometimes it is taken to mean a self-
evident undeniable truth; in other situations it simply refers to anything that is assumed without proof
when developing some theory (e.g. linear algebra). Here it is the latter.

Definition 1.1. A number system K is said to be a field if it satisfies the following ten axioms:
(A1) α+ β = β + α, for all α, β ∈ K (commutativity of addition)
(A2) (α+ β) + γ = α+ (β + γ), for all α, β, γ ∈ K (associativity of addition)
(A3) There exists 0 ∈ K, such that α+ 0 = α, for all α ∈ K (existence of zero element)
(A4) For each α ∈ K there exists −α ∈ K such that α+ (−α) = 0 (existence of additive inverses)
(M1) αβ = βα, for all α, β ∈ K (commutativity of multiplication)
(M2) (αβ)γ = α(βγ), for all α, β, γ ∈ K (associativity of multiplication)
(M3) There exists 1 ∈ K such that α1 = α, for all α ∈ K (existence of identity element)
(M4) For each α ∈ K\{0} there exists α−1 ∈ K such that αα−1 = 1 (existence of multiplicative inverses)
(D) (α+ β)γ = αγ + βγ, for all α, β, γ ∈ K (distributivity of multiplication over addition)

(ND) 1 6= 0 (non-degeneracy1)

Recall the definition of a group:

Definition 1.2. Let G be a set and let ∗ be a binary operation on G (a map that takes any two elements
of G and returns an element of G). We say that the pair (G, ∗) is a group if
(G0) The set G is closed with respect to the operation ∗, i.e. if α, β ∈ G then α ∗ β ∈ G. (Strictly

speaking, this is part of the definition of the binary operation, but is often included anyway.)
(G1) (α ∗ β) ∗ γ = α ∗ (β ∗ γ), for all α, β, γ ∈ G (associativity)
(G2) There exists 1 ∈ G such that α ∗ 1 = 1 ∗ α = α, for all α ∈ G (existence of identity)
(G3) For each α ∈ G there exists α−1 ∈ G such that α ∗ α−1 = α−1 ∗ α = 1 (existence of inverses)

It is common practice to refer to “the group G” with the operation implicit. G is said to be abelian
(or commutative) if additionally
• α ∗ β = β ∗ α, for all α, β ∈ G.

1This condition is simply to exclude the trivial set {0} from being a field.
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Using the idea of a group we can summarise the definition of a field as follows.

Definition 1.3. A number system K is said to be a field if:
• K is an abelian group under addition;
• K \ {0} is an abelian group under multiplication;
• Multiplication on K distributes over addition;
• 1 6= 0.

2 Vector Spaces

In applied mathematics vectors are often thought of geometrically, perhaps representing some physical
quantity, such as velocity or momentum; in such cases a vector is considered as something with magnitude
and direction. In pure mathematics, on the other hand, vectors can be treated entirely algebraically and
this is how vectors encountered in linear algebra should be thought of: as mathematical objects that
obey certain rules. One advantage of the algebraic approach is that it is just as easy to study vectors in
n dimensions as it is to study them in two or three.

Definition 2.1. A vector space over a field K is a set V together with two basic operations, known as
vector addition and scalar multiplication, such that the following axioms hold:
(V0) The set V is closed under vector addition and scalar multiplication. That is, if v,w ∈ V and α ∈ K

then v + w ∈ V and αv ∈ V . (As in the definition of a group, this axiom is actually part of the
definition of the operations themselves but is included as a reminder.)

(V1) With respect to the operation of vector addition, V is an abelian group.
(V2) α(v + w) = αv + αw, for all α ∈ K,v,w ∈ V
(V3) (α+ β)v = αv + βv, for all α, β ∈ K,v ∈ V
(V4) (αβ)v = α(βv), for all α, β ∈ K,v ∈ V
(V5) 1v = v, for all v ∈ V (where 1 is the identity scalar in K)

The elements of K are called scalars and the elements of V are called vectors. Often, but not always,
Greek letters and boldface letters are used for these, respectively. Note that both K and V have zero
elements, and these are distinct. The zero scalar is 0K (sometimes just written “0”) and the zero vector
is 0V (sometimes 0).

It is usually not important what field K actually is. Throughout this course it is safe to assume that
K = R, but in later courses there are times when it is necessary to have K = C (e.g. to find the Jordan
Canonical Form of a matrix – see MA251 Algebra I: Advanced Linear Algebra).

Using the axioms of vector spaces it is possible to prove some obvious properties of vectors and
scalars, such as
• α0V = 0V , for all α ∈ K.
• 0Kv = 0V , for all v ∈ V .
• −(αv) = (−α)v = α(−v), for all α ∈ K,v ∈ V .

2.1 Subspaces

Another important definition is that of a vector subspace.

Definition 2.2. Let V be a vector space and let W ⊂ V be non-empty. We say that W is a (vector or
linear) subspace of V if W is itself a vector space with respect to the same operations as those on V .

If W 6= V then we say that W is a proper subspace of V .

Note that since W is a subset of V most of the properties of V are carried over to W so we only
really need to check that W is closed with respect to the relevant operations. This is summed up in the
following proposition.

Proposition 2.3. Let V be a vector space over a field K and let W ⊂ V be non-empty. If for all
v,w ∈W and α ∈ K we have v + w ∈W and αv ∈W then W is a subspace of V .

For any given vector space V , the sets V and {0V } are always automatically subspaces of V , which
we refer to as “trivial subspaces”. Note that every subspace of V must contain the zero vector 0V .
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Proposition 2.4. If W1 and W2 are subspaces of a vector space V then W1 ∩ W2 and W1 + W2 =
{w1 + w2 | w1 ∈W1,w2 ∈W2} are both subspaces of V .

Note that W1 + W2 is not the same as W1 ∪W2, which may not even be a subspace. For example,
the lines W1 = {(α, 0) | α ∈ R} and W2 = {(0, α) | α ∈ R} are both subspaces of R2, but their union is
not a subspace as it is not closed (e.g. (1, 0) + (0, 1) = (1, 1) /∈W1 ∪W2).

Definition 2.5. Two subspaces W1 and W2 of a vector space V are said to be complementary if
W1 ∩W2 = {0V } and W1 +W2 = V . This is equivalent to saying that each vector v ∈ V can be written
uniquely as v = w1 + w2 where w1 ∈W1 and w2 ∈W2.

2.2 Examples of Vector Spaces

The most obvious example of a vector space is Kn (sometimes written Vn(K)), where the vectors are
n-tuples of elements of K. That is,

Kn = {(α1, α2, . . . , αn) | α1, α2, . . . , αn ∈ K}.

For instance, if K = R then Rn is just n-dimensional space (e.g. R2 = {(α, β) | α, β ∈ R} is the set of
ordered pairs, representing points in the plane). Vector addition and scalar multiplication are defined in
the obvious way.

(α1, . . . , αn) + (β1, . . . , βn) = (α1 + β1, . . . , αn + βn), λ(α1, . . . , αn) = (λα1, . . . , λαn).

The zero vector is 0 = (0, 0, . . . , 0).
Examples of non-trivial subspaces of Rn include lines, planes, etc. up to (n − 1)-dimensional hy-

perplanes through the origin. For n = 3, for instance, a line through the origin is a set of the form
{λv | λ ∈ R} for some direction vector v.

The set of all polynomials with coefficients in K and degree less than or equal to some fixed natural
number n is a vector space, K[x]≤n (sometimes written Pn(K)), where vector addition and scalar multi-
plication are defined as expected. In fact the set of all polynomials with coefficients in K (and unlimited
degree) is a vector space, K[x]. However, the set of all polynomials with coefficients in K and degree
exactly n is not a vector space as it is not closed under vector addition. For any natural number n, the
vector space K[x]≤n is a subspace of K[x].

As an example from analysis, the set of all real-valued functions on some set A ⊂ R is a vector space,
with vector addition and scalar multiplication defined by

(f + g)(x) = f(x) + g(x) (λf)(x) = λf(x)

The set of continuous real-valued functions defined on A, which we denote C0(A), is a subspace of this
vector space.

3 Linear Independence, Spanning Sets and Bases

An important idea in linear algebra is that of the dimension of a vector space. Geometrically, the
dimension can be thought of as the number of different “coordinates” (e.g. R3 is 3-dimensional as it can
be described by an x-, a y- and a z-coordinate). This intuitive interpretation works well for relatively
simple vector spaces, such as Rn, but is somewhat less useful for more complicated examples, including
spaces of polynomials or functions.

It is possible to define dimension of a vector space in a purely algebraic way using the notion of a
“basis”. There are some important preliminary definitions.

Definition 3.1. A linear combination of a set of vectors v1, . . . ,vn in a vector space V over a field K
is any sum

λ1v1 + · · ·+ λnvn

where λ1, . . . , λn are scalars (possibly zero) in K.
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Definition 3.2. A set of vectors v1, . . . ,vn in a vector space V over a field K are said to be linearly
independent if none of them is a linear combination of the others. This is the same as saying that

λ1v1 + · · ·+ λnvn = 0V =⇒ λ1 = · · · = λn = 0K .

If the vectors v1, . . . ,vn are not linearly independent then we say that they are linearly dependent.

Lemma 3.3. A set of vectors v1, . . . ,vn ∈ V are linearly dependent if and only if for some vr either
vr = 0V or vr is a linear combination of v1, . . . ,vr−1,vr+1, . . . ,vn.

Definition 3.4. A set of vectors v1, . . . ,vn in a vector space V over a field K are said to span V if
every v ∈ V can be written in at least one way as a linear combination of vectors in the set. That is, if
for all v ∈ V there exist scalars λ1, . . . , λn ∈ K, such that

v = λ1v1 + · · ·+ λnvn.

Definition 3.5. A set of vectors v1, . . . ,vn in a vector space V are said to form a basis for V if they
are linearly independent and span V .

Proposition 3.6. If v1, . . . ,vn is a basis for the vector space V then every v ∈ V can be written as a
unique linear combination of the vectors v1, . . . ,vn. That is,

v = λ1v1 + · · ·+ λnvn

where the scalars λ1, . . . , λn are uniquely determined by v.

Theorem 3.7. Any two bases2 of a vector space contain the same number of vectors. (append the two
bases and apply 3.9)

3.1 Dimension

The previous result means that the following is well-defined.

Definition 3.8. The dimension of a vector space V is the number of vectors in any basis for V . We
write dimV for the dimension of V . (By convention, dim{0V } = 0.)

For example, dimKn = n; any vector can be described uniquely by n coordinates. Any vector space
V where dimV = n for some natural number n is said to be finite dimensional. There are also vector
spaces with infinite dimension: K[x] has the countably infinite basis

1, x, x2, x3, . . . , xn, . . .

whereas the space of all real-valued functions defined on a set A ⊂ R has uncountably infinite dimension.
However, this course deals almost exclusively with finite dimensional vector spaces.

Note that a finite dimensional vector space is not necessarily finite. For instance, consider the plane
R2. This has a finite dimension of two, but contains an uncountably infinite number of points (vectors).
As long as the field K is infinite then so is the vector space.

Lemma 3.9. Suppose that the vectors v1, . . . ,vn,w ∈ V span V and that w is a linear combination of
v1, . . . ,vn. Then v1, . . . ,vn span V . In other words, given a spanning set, you can remove any vector
that is a linear combination of the others and still have a spanning set; this is called “sifting”.

Corollary 3.10. Suppose that the vectors v1, . . . ,vr ∈ V span V and that dimV = n where r > n.
Then the set {v1, . . . ,vr} contains a proper subset that is a basis for V . That is, any spanning set can
be reduced to a basis.

Lemma 3.11. Suppose that V is an n-dimensional vector space and that the vectors v1, . . . ,vr ∈ V are
linearly independent, where r < n. Then there exist vectors vr+1,vr+2, . . . ,vn ∈ V such that v1, . . . ,vn
forms a basis for V . Thus, any set of linearly independent vectors can be extended to a basis.

2The plural of basis is “bases”.
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Given two subspaces W1 and W2 of a vector space V , we can form the subspaces W1 + W2 and
W1 ∩W2. As any subspace is itself a vector space, we can find the dimension of each subspace. The
following theorem tells us how the dimensions of W1, W2, W1 +W2 and W1 ∩W2 are related.

Theorem 3.12. Suppose that V is a finite-dimensional and W1, W2 are two subspaces of V . Then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

4 Matrices and Linear Maps

4.1 Linear Transformations

Single vector spaces considered in isolation are not very interesting. The main results in linear algebra are
concerned with the maps between vector spaces, which are called linear maps (or linear transformations).

Definition 4.1. Let U and V be two vector spaces over the same field K. A linear map (or linear
transformation) is a map T : U → V such that
• T (u1 + u2) = T (u1) + T (u2), for all u1,u2 ∈ U
• T (λu) = λT (u), for all u ∈ U and λ ∈ K.

These two conditions can be condensed into one equivalent condition:

T (λu1 + µu2) = λT (u1) + µT (u2), for all u1,u2 ∈ U and λ, µ ∈ K.

Proposition 4.2. The following results follow immediately.
• T (0U ) = 0V .
• T (−u) = −T (u), for all u ∈ U.

Linear maps between vector spaces are just one example of structure-preserving maps between alge-
braic structures. A homomorphism between two groups (G, ∗) and (H, ·) is a map φ : G→ H such that
φ(g1 ∗ g2) = φ(g1) · φ(g2) for every g1, g2 ∈ G, i.e. such that in some sense the structure is preserved. A
linear map between vector spaces can be thought of as a type of homomorphism.

There are many examples of linear maps between vector spaces. For instance, the embedding T : R2 →
R3 defined by T : (α, β) 7→ (α, β, 0) is a linear map, as is a rotation about the origin in the plane (i.e. R2).

However, there are also plenty of examples of maps between vector spaces which are not linear.
Consider the translation T : Rn → Rn defined by T : (α1, α2, . . . , αn) 7→ (α1 + 1, α2, . . . , αn). Since
T (0) 6= 0, this cannot be linear.

The following theorem is very important.

Theorem 4.3. A linear map is completely determined by its action on a basis. If two linear maps have
the same effect on a basis of the domain then they are the same map.

Now, some more definitions.

Definition 4.4. Let U and V be vector spaces and let T : U → V be a linear map. The image of T ,
written imT , is the set of vectors v ∈ V such that v = T (u) for some u ∈ U . That is,

imT = {T (u) | u ∈ U}.

Definition 4.5. Let U and V be vector spaces and let T : U → V be a linear map. The kernel (or
nullspace) of T , written kerT , is the set of vectors u ∈ U such that T (u) = 0V . That is,

kerT = {u ∈ U | T (u) = 0V }.

Proposition 4.6. The kernel and image of a linear map T : U → V are subspaces of U and V , respec-
tively.

Definition 4.7. The rank of a linear map T : U → V is the dimension of its image, i.e. rankT =
dim(imT ).
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Definition 4.8. The nullity of a linear map T : U → V is the dimension of its kernel, i.e. nullity T =
dim(kerT ).

The dimensions of the kernel and image of a linear map between vector spaces are closely related.
The next theorem tells us how.

Theorem 4.9 (Dimension Theorem). Let U and V be finite-dimensional vector spaces over a field K
and let T : U → V be a linear map. Then

rankT + nullity T = dimU.

Proposition 4.10. Let U and V be vector spaces with dimU = dimV = n and let T : U → V be a
linear map. Then the following are equivalent.
• T is surjective
• rankT = n
• nullity T = 0
• T is injective
• T is bijective

Definition 4.11. If U and V are vector spaces with dimU = dimV a linear map T : U → V is said to
be non-singular if it is surjective and singular if it is not. Equivalently, a map T is singular if kerT 6= 0.

Linear maps can be combined in several ways. Let U , V and W be vector spaces and let T1 : U → V ,
T2 : U → V and T3 : V →W be linear maps. Then the following are also linear maps:
• T1 + T2 : U → V , defined as (T1 + T2)(u) = T1(u) + T2(u), for all u ∈ U .
• λT1 : U → V , defined as (λT1)(u) = λT1(u), for all u ∈ U and fixed λ ∈ K.
• T3 ◦ T2 : U →W , defined as (T3 ◦ T2)(u) = T3(T2(u)), for all u ∈ U .

4.2 Matrices

Matrices are combinatorial structures which represent linear transformations. That is, the effect of
multiplying a column vector by a matrix gives the same result as applying the corresponding linear
transformation to that column vector, and vice versa. For example, the map T : R2 → R2 defined by

T :

(
x
y

)
7→
(
x+ y
2x− y

)

is described by the matrix

(
1 1
2 −1

)
, since

(
1 1
2 −1

)(
x
y

)
=

(
x+ y
2x− y

)
The basic matrix operations are straightforward. Addition and scalar multiplication are carried out

term by term. Slightly more complicated is the multiplication of two matrices. Note that two matrices
can only be multiplied together if the second has the same number of rows as the first has columns.

Using the notation

(αij) =

α11 · · · α1n

...
. . .

...
αm1 · · · αmn


the product of A = (αij) and B = (βij) is AB = C where C = (γij) and

γij =

n∑
k=1

αikβkj .
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Proposition 4.12. The following “laws of matrices” always hold:
• A+B = B +A where A and B are m× n matrices.
• (A+B)C = AC +BC where A and B are l ×m matrices and C is an m× n matrix.
• A(B + C) = AB +AC where A is an l ×m matrix and B and C are m× n matrices.
• (λA)B = λ(AB) = A(λB) where A is an l ×m matrix, B is an m× n matrix and λ ∈ K.
• (AB)C = A(BC) where A is an l ×m matrix, B is an m× n matrix and C is an n× p matrix.

Note that matrix multiplication is not commutative, i.e. in general it is not true that AB = BA.

Definition 4.13. The transpose of an m× n matrix A, written At, is the n×m matrix whose (i, j)th
entry is the (j, i)th entry of A.

Proposition 4.14. For an m× n matrix A and a n× p matrix B, (AB)t = BtAt.

Definition 4.15. The zero matrix has every entry equal to 0. Sometimes the m × n zero matrix is
written 0m×n.

Definition 4.16. The n× n identity matrix is a square n× n matrix (αij) where αii = 1 for 1 ≤ i ≤ n
and αij = 0 if i 6= j. In other words, αij = δij , the Kronecker delta.

Let U and V be vector spaces and let T : U → V be a linear map. For each choice of basis for U
and V there is exactly one matrix that represents T . The product of two matrices representing linear
transformations corresponds to the composition of the linear transformations, provided the multiplication
is carried out in the correct order.

5 Elementary Operations and the Rank of a Matrix

Recall that the rank of a linear map T : U → V is the dimension of its image, i.e. rankT = dim(imT ).

5.1 Row and Column Operations

Definition 5.1. The row rank of a matrix A is the dimension of the vector space spanned by the vectors
that make up its rows.

Definition 5.2. The column rank of a matrix A is the dimension of the vector space spanned by the
vectors that make up its columns.

Lemma 5.3. If T : U → V is a linear map represented by a matrix A then

rankT = row rankA = column rankA.

In order to determine the rank of a matrix it is often easier to row- or column-reduce it. This is done
via a series of operations which do not change the rank and results in a matrix whose rank can be read
off without any thought.

Let A be an m× n matrix. There are three elementary row operations and three elementary column
operations.
(R1) Add a multiple of one row to another different row.
(R2) Interchange two different rows.
(R3) Multiply a row by a non-zero scalar.

The column operations (C1)–(C3) are defined analogously to the row operations above.

Lemma 5.4. Applying any row operation (R1)–(R3) or any column operation (C1)–(C3) to a matrix
A does not change the rank of A.

All row and column operations can be represented by elementary matrices whose effect on another
matrix is then to apply that row or column operation. To obtain the matrix of a row or column operation
simply apply the row or column operation to the identity matrix, giving the elementary matrix required.
The effect of applying the same row or column operation to a matrix is then found by premultiplying
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that matrix by the elementary matrix just found. Make sure you know how to express a matrix in terms
of elementary matrices.

By repeated application of the elementary row operations a matrix can be reduced to upper echelon
form, where the leftmost non-zero element of each row is equal to 1:

1 · · · ·
0 1 · · ·
0 0 0 1 ·
0 0 0 0 0

 .

The rank of the original matrix is then equal to the number of non-zero rows in upper echelon form.
It is possible to further reduce a matrix in upper echelon form to row-reduced echelon form where the

leftmost non-zero entry in each row is a 1 and is the only non-zero entry in that column, for example:
1 2 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

 .

The above matrix has a rank equal to 3.
By applying column operations, we can further reduce a matrix in row-reduced echelon form to Smith

normal form, which has the first s entries on the leading diagonal equal to 1 and all other entries zero,
for example: 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 .

Proposition 5.5. Let s be the number of non-zero rows in the Smith normal form of a matrix A. Then
both the row rank of A and the column rank of A are equal to s.

5.2 Linear Equations and Row Operations

Given a system of linear equations such as:

α11x1 + α12x2 + · · ·+ α1nxn = β1

α21x1 + α22x2 + · · ·+ α2nxn = β2

...

αn1x1 + αn2x2 + · · ·+ αnnxn = βn

we can set A = (αij) and write Ax = b, where x = (x1, x2, . . . , xn)T and b = (β1, β2, . . . , βn)T . By
forming the augmented matrix

A′ =


α11 α12 · · · α1n β1
α21 α22 · · · α2n β2

...
...

. . .
...

...
αn1 αn2 · · · αnn βn

 .

we can apply elementary row operations to this matrix to reduce the system of equations to a simpler
form and hence find the solution. Note that we cannot apply elementary column operations since they
change the system.

6 Determinants and Inverses

When does a linear map between two vector spaces have an inverse? That is, given a linear map
T : U → V , what conditions do we require for there to be a map T−1 : V → U such that TT−1 = IV and
T−1T = IU? Essentially, to be invertible, it must be injective and surjective, which means that it must
be non-singular.
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Theorem 6.1. A linear map T is invertible if and only if T is non-singular. In particular, if T is
invertible then m = n, so only square matrices can be invertible.

We can calculate the inverse of a matrix by row-reduction, and the row-reduced form of any invertible
n×n matrix is In. However, this is tedious to compute. Determinants exist to allow us to quickly check
whether a given matrix (or the linear map which it represents) is invertible. They are only defined for
square matrices, since a non-square matrix will necessarily either have non-zero nullity (and hence not
be surjective) or its transpose will; in both these cases the matrix clearly cannot have an inverse.

Geometrically speaking the determinant of a linear map or the matrix representing a linear map is
related to the scaling factor of the map. The determinant is equal to the area of the image of a unit
square under that transformation. If the determinant is zero then some unit square is mapped to a
region of zero area, and therefore some non-zero regions will be shrunk to lines. Such a map is certainly
non-invertible.

Theorem 6.2. Let A be a matrix. A is invertible if and only if detA 6= 0.

In order to define the determinant of an n×n matrix we need to recall a few facts about permutations.

Definition 6.3. A permutation on the set Xn = {1, . . . , n}, where n is a natural number, is a bijection
φ : Xn → Xn.

Definition 6.4. The symmetric group of order n is the group Sn of permutations from the set Xn where
n is a natural number, where the product of two permutations is their composition.

Definition 6.5. A transposition is a permutation of Xn that interchanges two numbers i and j and
leaves all other numbers fixed; it is written as (i, j).

Definition 6.6. A permutation φ is even, with sign(φ) = +1, if φ is a composite of an even number of
transpositions; φ is odd, with sign(φ) = −1, if φ is a composite of an odd number of transpositions.

Definition 6.7. Let A be an n× n matrix over a field K. We define the determinant of A as follows:

detA =
∑
σ∈Sn

sign(σ)α1σ(1)α2σ(2) · · ·αnσ(n)

This definition can look rather complicated so the following two examples show how the determinants
of 2× 2 and 3× 3 matrices are calculated in practice.

Examples 6.8. ∣∣∣∣α11 α12

α21 α22

∣∣∣∣ = α11α22 − α12α21

∣∣∣∣∣∣
β11 β12 β13
β21 β22 β23
β31 β32 β33

∣∣∣∣∣∣ = β11

∣∣∣∣β22 β23
β32 β33

∣∣∣∣− β12 ∣∣∣∣β21 β23
β31 β33

∣∣∣∣+ β13

∣∣∣∣β21 β22
β31 β32

∣∣∣∣
= β11(β22β33 − β23β32)− β12(β21β33 − β23β31) + β13(β21β32 − β22β31).

We now consider the effect of row and column operations on the determinant. First note that
det(In) = 1.

Proposition 6.9. Let A be an n× n matrix.
• Applying (R1) to A (i.e. adding a multiple of one row to another) leaves detA unchanged.
• Applying (R2) to A (i.e. interchanging two rows) multiplies detA by −1.
• Applying (R3) to A (i.e. multiplying a row by a scalar λ) multiplies detA by λ.

From this we can compute the determinant of any elementary matrix. We also obtain the following
result for the determinant of a product.

Proposition 6.10. For any two n× n matrices A and B, we have det(AB) = detAdetB.
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6.1 Minors and Cofactors

Definition 6.11. Let A be an n×n matrix. Let Aij be the (n−1)× (n−1) matrix obtained from A by
deleting the ith row and jth column of A, and let Mij = det(Aij). Then Mij is called the (i, j)th minor
of A.

Definition 6.12. Let A be an n× n matrix. Define the (i, j)th cofactor of A by cij = (−1)i+jMij .

Theorem 6.13. For any i with 1 ≤ i ≤ n, we have detA =
∑n
j=1 αijcij . Similarly, for any j with

1 ≤ j ≤ n, we have detA =
∑n
i=1 αijcij .

Definition 6.14. Let A be an n×n matrix. Define the adjoint matrix adj(A) of A as the n×n matrix
whose (i, j)th element is the cofactor cji, i.e. adj(A) is the transpose of the matrix of cofactors.

Theorem 6.15. A adj(A) = det(A)In = adj(A)A. Furthermore, if det(A) 6= 0 then A−1 = 1
det(A) adj(A).

7 Change of Basis and Similar Matrices

7.1 Bases

Let T : U → V be a linear map between U and V . To express T as a matrix requires picking a basis
{ei} of U and a basis {fj} of V . To change between two bases {ei} and {e′i} of U , we simply take the
identity map IU : U → U and use the basis {ei} in the domain and the basis {e′i} in the codomain; the
matrix so formed is the change of basis matrix from the basis of eis to the e′is. Any such change of basis
matrix is invertible.

Theorem 7.1. Let A be the matrix of T : U → V with respect to the bases {ei} of U and a basis {fj}
of V , and let B be the matrix of T with respect to the bases {e′i} of U and a basis {f ′j} of V . Let P be
the change of basis matrix from {ei} to {e′i}, and let Q be the change of basis matrix from {fi} to {f ′i}.
Then B = QAP−1.

The previous result means that there exist invertible matrices P and Q such that B = QAP (replacing
P with P−1).

Definition 7.2. Two m× n matrices A and B are equivalent if there exist invertible matrices P and Q
such that B = QAP .

Theorem 7.3. Let A and B be m× n matrices over K. Then the following are equivalent:
• A and B are equivalent.
• A and B represent the same linear map with respect to different bases.
• A and B have the same rank.
• B can be obtained from A by application of elementary row and column operations.

7.2 Similar Matrices

We now consider the special case where U = V .

Definition 7.4. Two n × n matrices A and B over a field K are said to be similar if there exists an
invertible n× n matrix P , such that B = P−1AP .

Similar matrices are equivalent, but equivalent matrices are not necessarily similar. Not every n× n
matrix is similar to a diagonal matrix3.

Definition 7.5. Let V be a vector space and let T : V → V be a linear map. An eigenvector of T is a
non-zero vector v ∈ V such that T (v) = λv for some λ ∈ K.

Definition 7.6. An eigenvalue of T is a scalar λ ∈ K such that T (v) = λv for some eigenvector v of T .

3An example of this is
(
01
00

)
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Note that because of the correspondence between results about linear maps and matrices that saying
T (v) = λv is exactly the same as saying Av = λv, where A is the matrix representing the transformation
T .

For an eigenvector v of a matrix A we have

Av = λv

=⇒ (A− λIn)v = 0V

=⇒ det(A− λIn) = 0

since eigenvectors are non-zero by definition, meaning that the matrix A−λIn must be singular. Hence,
in order to find the eigenvalues of a matrix A we need to solve the following equation

det(A− λIn) = 0

where A is the matrix representing a linear map T : V → V with dimV = n.

Definition 7.7. For an n × n matrix A, the equation det(A − xIn) = 0 is called the characteristic
equation of A, and det(A−xIn) is called the characteristic polynomial of A. It is a polynomial of degree
n in x.

Theorem 7.8. Let A be an n×n matrix. Then λ is an eigenvalue of A if and only if det(A− λIn) = 0.
That is, the eigenvalues of A are the roots of its characteristic polynomial.

Theorem 7.9. Similar matrices have the same characteristic equation and hence the same eigenvalues.

This is because similar matrices represent the same linear map with respect to different bases. The
basis which we use to describe a map does not affect the map itself, so the same map described in two
different ways must have the same eigenvalues.

Theorem 7.10. Let V be a vector space and let T : V → V be a linear map. Then the matrix of T
is diagonal with respect to some basis of V (or equivalently, any matrix A of T is similar to a diagonal
matrix) if and only if V has a basis consisting of eigenvectors of T .

Proposition 7.11. The eigenvalues of an upper triangular matrix are just the entries along the diagonal.

In particular, the determinant of a matrix that has been diagonalised is just the product of the
eigenvalues of the matrix.

Theorem 7.12. Let λ1, . . . , λr be distinct eigenvalues of a linear map T : V → V and let v1, . . . ,vr be
the corresponding eigenvectors. Then v1, . . . ,vr are linearly independent.

Corollary 7.13. If the linear map T : V → V has n distinct eigenvalues, where dimV = n, then T is
diagonalisable.

An analogous statement holds for the corresponding matrix A. It is important to be aware that the
converse of this statement is not true. There are many matrices that can be diagonalised even though
they may have repeated eigenvalues.

Closing Remarks

As you can see, there’s a reasonable amount of material in Linear Algebra, but it’s easy to get confused
with all the abstract definitions. Being able to accurately state definitions and key theorems is important
(and easy marks in the exam), so learn them well. While a smattering of short proofs might be examined,
it’s more likely that you’ll be asked questions about simple examples to test your understanding, so
know how to apply the key theorems as well as what they state. Above all though, practice is the
best medicine, especially through past exam questions; the format isn’t likely to change all that much
compared to previous years. So practise, practise, practise, and good luck in the exam!
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