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Introduction

This revision guide for MA209 Variational Principles has been designed as an aid to revision, not a
substitute for it. This module consists a few derivations which are important and there is a lot of solving
linear coefficient ODEs. Make sure you practice integrating by parts. The exams are very similar each
year so practice all derivations and do examples from the past papers.

Disclaimer: Use at your own risk. No guarantee is made that this revision guide is accurate or
complete, or that it will improve your exam performance. Use of this guide will increase entropy,
contributing to the heat death of the universe.

Authors

This revision guide for MA209 has been designed as an aid to revision, not a substitute for it. Written

by Joy Tolia.

Based upon lectures given by Prof. John Rawnsley at the University of Warwick, 2012-2013.

Any corrections or improvements should be entered into our feedback form at http://tinyurl.com/WMSGuides
(alternatively email revision.guides@warwickmaths.org).
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1 Fundamental Theorem of Calculus of Variations

Theorem 1.1 (Fundamental Theorem of Calculus of Variations). If v(x) is a continuous function on
[x1, 2] such that

T2
/ v(x)u(x)dz =0
1
for all u € C? with u(z1) = u(xs) = 0 then

v(xz) =0 Vo € [x1,x2].
Proof. Assume that f;lz v(z)u(z)dz = 0 for all u € C? with u(x;) = u(xs) = 0. Suppose Jz¢ € (21, 72)

where v(xg) > 0. Then since v is continuous, 36 > 0 such that v(z) > 0 Vz € (2o — §, 20 + §). Suppose
we can find u € C? such that

u(z) = u(z) >0 Vxe (:1?0 — 6,0 + 9)
0 otherwise

Then wu(z)v(x) is strictly positive for all 2 € (zg — 8, 29 + &) and zero otherwise. Hence we have:

/:2 v(x)u(z)dx = /%4_(S v(z)u(z)dx >0

1 3:0—6
This is a contradiction, hence v(z) = 0 for all z € [z1, z2]. O
Remark 1.2. We can always find a u that we need in the above proof, for example:
() = {(xo +d—x)3(x — 1m0+ 0)® V€ (z0— 6,20+ 9)

0 otherwise

2 Euler-Lagrange Equation

Definition 2.1. Let y be a function of z, f be a function of z,y,y’ and I(y) = fjf f(x,y,y)dx be a
functional then its Euler-Lagrange equation is given by

5fd(5f>0
oy dx \oy' )

Theorem 2.2. Suppose y € C? is a function of x and f € C? is a function of z,%,y’. Then, any critical
point y(x) of the functional

Z2
I(y) =/ fzy,y')de
1
satisfies its Fuler-Lagrange equation:
of ~d (91 _,
oy dx \oy' )

Proof. Suppose y € C? is a critical point of I. Let u € C? satisfy u(z;) = u(xy) = 0, and consider
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gu(t) = I(y + tu). g.(t) has a critical point at ¢ = 0, hence:

d d
—(gu(t)) = —(I(y+tu))
dt ", dt o
d [*?
= - flz,y+tu,y + tu')de
t x1 t=0
T2
= / (df(ac,y+tu,y’+tu') )da:
T1 dt t=0

_ (= (of  ,of
= /I1 (uay+uay/>dx

Integrating by parts we get:

= u—=—dzr + |u=—— — u— | == | dzx
/g,c1 dy o' |, v dx \ Oy
As u(zy) =0 = u(z2) :
vz of d <3f >>
= ul==——\(55)])dx=0

/gE1 <8y dx \ Oy’
Apply the fundamental theorem of calculus of variations with v = % — % ( g J,) then we have %;; —
d (O0f \ _
dx (ay/) =0. O

Example 2.3 (Question lc, June 2012). Find the extremal of

/2
I(y) = / W) —y* — 227/ du
0
with y(0) = 0,y(7/2) = 1.

Let f = (y’)2 —y? — 222y, Using the Euler-Lagrange equations, we get:

Of A (0N _ o Doy g
oy dz <8y’> = T dz (2" = 227%)

= —2y—2y" +4x
= 0
We get the extremal satisfies the following equation y” +y = 2z. Solving the characteristic function and

the particular integral we get the general solution y = Asin(x) + B cos(z) + 2z. Finally using the initial
conditions we get A = —7 and B = 0. Hence the extremal of the integral I(y) is:

y = 2z — wsin(x)

Proposition 2.4. Suppose f has no explicit z dependence and satisfies the Euler-Lagrange equation.

Then, f — 1y’ aa@f/ is constant.

Proof. As f has no explicit  dependence, % =0.

a0t _ of  of  w0f  ,OF  ,d (OF
dx(f y@y’) B 8x+y8y+y oy’ yay’ Yz Yy’

(o d (o
Jy dx \ 0y
=0 (By E-L equation)

Therefore f — v/ g yf, is constant. O
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Definition 2.5. Let I(y) = f;f f(z,y,y)dz be a functional then if it has no explicit  dependence.
Then its 15t Integral is given by
of
/
f y 82]/ M
When y is sufficiently smooth, this theory above extends to when f is a function of multiple derivatives
of y.

Proposition 2.6. Suppose y € C"*! is a function of z and f € C™*! is a function of z,y,7/, ...,y
then any critical point y(z) of the functional

I(y) :/ fa,y, v, y™)de
satisfies the following equation:
of d [(Of d> [ of dm of
2o (2 )+ = e (1) =
Oy dx (83,/’) + dx? (ay” o= dz™ \ Oy 0

Proof. Suppose y € C™t1 is critical point of I. Let u € C™ such that u(x1) = u(zy) = ... = u™ V() =
u= Y (x5) = 0, and consider g, (t) = I(y + tu). g,(t) has a critical point at ¢ = 0, hence:

d 2 9f ,0f ) Of
—gu(t = - — +... " d
ad W /x Yoy TVay T T gm ™
Integrating by parts multple times and
as u(zy) = u(zg) = ... = " V(z;) = u" "V (23) = 0 we have:
v2 of d (8]‘) d? (8f> ar of
= uwl=——— (== ) +-— +o+ (D) — dx
/gc1 (3y dz \ 9y’ dz? \ Oy dz™ \ Oy
=0
Applying the Fundamental Theorem of Calculus of Variations we get the result. O

This theory also extends to the case where f is a function of more than one variable.

Proposition 2.7. Suppose z,y € C? are functions of ¢ and f € C? is function of ¢, x,y, &, 7, then any
critical point (x(t),y(t)) of the functional I(z,y) = fttf f(t,z,y, &, 9)dt satisfies the following equations:

of _d (of\_,
ax_dt<a¢>_

o ()
oy dt \oy)

Proof. Let uy,us € C? such that uy(x1) = uy(22) = ua(x1) = uz(x2) = 0 and consider
Guy,uz (h1,ha) = I(x 4+ hyui,y + houg).

If (x(t),y(t)) is a critical point of I(x,y) then gy, u, (1, ha) has a critical point at (hq, he) = (0,0) so we
have:
Gy us OGuy us

8h1 ahQ
Looking at the partial derivative of g,, ., With respect to h; we have:

(0,0) =0, (0,0) =0

d
a7 Yuqi,us\Y, = —1 h ;
Bl 9 (0,0) dh, (z + hiuy,y)

}L1=O

Therefore x is a critical point of the functional x — I(z,y) with y fixed. Hence z satisfies its Euler-
Lagrange equation:

o _d (9 _,

Or dt \oi)

Similarly considering the partial derivative of gy, ., With respect to ho we get that y satisfies its Euler-
Lagrange equation. O
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3 Fermat’s Principle for Optics

Light in a transparent medium travels along trajectories whose shape is determined by the speed of light
¢. In a 2-D medium the speed at (z,y) is given by a function ¢(z, y).

Fermat’s Principle: Light travels along a path in a transparent medium between two points cho-
sen to minimise the time taken amongst all possible paths joining those two points.

Proposition 3.1. Let the points (z1,y1) and (22, y2) be in a medium where the speed of light is ¢(z, y).
Then the path of light, y(x) between the two points is given by the critical point of the following

functional:
/ Vi+W)*: 1 +

Proof. The time taken by light to travel from (z1, yl) to (:cz, y2) in a medium where the speed of light
is ¢(z,y) is given by:

Tly) = ta—t

Then by Fermat’s Principle we have that light travels on the path y(z) which minimises the above
functional. O

Proposition 3.2. Let the points (z1,y1) and (x2,y2) be in a medium where the speed of light only
depends on y, hence ¢ = ¢(y). Then 3D € R such that

1

Vit er

Proof. Observing that f(z,y,y’) = VIO o f has no explicit = dependence, and that any path light

c(y)

takes is an extremal of the functional T'(y) defined above, the first integral of T, f — y , is constant.
Also we see:

of () y

f _ ylil — ( ) _ y/ —
dy c(y) c(y)/1+ (V')
1+@)? (v)?
cWvi+ @) cy)vi+(y)?
1

O

Example 3.3 (Question 2b, June 2012). Find the shape of the paths of light if ¢(z,y) = ky where k is
constant.

We have c¢(z,y) = c¢(y) = ky, so:
2

T2 ]__|_ /
T(y) = / | ky(y) dz
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Using Proposition for some constant A, we get:

1 /
N Yy

ky/1+ (v)? VB -2

Where B = (Ak)™". Substituting y = Bsin(u), we get y = B cos(u)u/. Substituting all this is we get

==l

Bsin(u)u' = +1 = Bcos(u) = F (2 + C) & B** + (z + C)? = B?

Where C is a constant. These are arcs of circles.

4 Hamilton’s Principle for Conservative Mechanics

A path of a (system of) particle(s) is a path in a Euclidean space of some dimension (R, R? R3 R3" .. .)
depending on the number of particles and degrees of freedom.

Let x(t) be the path of a particle (or system). In 3-D, a particle has a mass m and determines a
kinetic energy 2m|x|?. For a system of masses m;, positions x;(¢) then add together all the kinetic

energies for total kinetic energy:
1 .
K3

If force F acting on a system of particles is conservative then:
F=-VV
for some V' which is a function of x;, called the potential energy of the system.
We can change variables to some conveniently chosen system of generalised unconstrained coordinates.

Denote the generalised unconstrained coordinates by ¢i,qs,.... As the system moves the ¢; will be a
function of ¢. Using chain rule, T" and V become functions of ¢;, ¢;:

T(Qla"qu;q.lv"wq'n)

V(qla .. aQn)
L =T —V is a function of Lagrangian qi,...,¢n,q1,---,qn-

Hamilton’s Principle: If a mechanical system evolves from position p; at time ¢; to position ps
at time to then amotngst all paths joining p; to p2 at times ¢; and t9, the actual path is a critical point
of I(q1, .-, qn) = tf Ldt.

Example 4.1 (Question 2d, June 2012). A frictionless wire in the shape of the graph of a function
y = f(x) has a bead of mass m sliding on it under gravity. Find the equation of motion and a first
integral using = as the generalised coordinate.

We have y = f/(x)x, so:
1 1
T = om (i + %) = 3mi* (1+(/'(@)°)
V = —mgy = —mgf(z)
L=T-V= %mafg2 (1 + (f/(x))2) +mgf(z)
OL _ d (oL

Using the Euler Lagrange equation &2 — & %) = 0, the equation of the motion is given by:

mi}‘Qf/(l‘)fN(l‘) +mgf/(x) _ % (mx (1 + f(x)2)) =0

A first integral using energy is given by:

T4V = 2mi (14 (£/(2)°) ~ mof (@)
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5 Constraints and Lagrange Multipliers

If we want to find an extremum on a constrained set X = {(z,y) € R? : g(x,y) = 0} then the following
theorem is very important.

Theorem 5.1. Suppose f,g € C! are functions of two variables x,y and g is regular (i.e. Vg # 0). If
(70,%0) is an extremum of f on X = {(x,y) € R? : g(x,y) = 0} then there exists A € R such that f — g
has an unconstrained critical point at (xq, yo).

Proof. Let f,g € C! and Vg # 0 so without loss of generality assume g—z # 0. Let (x0,y0) be an
extremum of f on X. By implicit function theorem there exists a function n(x) € C! defined near x
with n(zg) = yo such that y = n(z) for all (z,y) near (xq,yo), so for all (z,y) near (xo,yo) we have:

g(z,n(x)) =0

We also have that f(z,y) = f(z,n(z)) near (xo,yo) so f(z,n(x)) has an extremum at xg so:

d
ZUEE)| =0
Which is the same as:
0 0 d
2 o)+ G o) - 5 o0) =0 )
As g(z,n(x)) = 0 for all x near xy we have
gl =0
d.’L' g Iaﬁ x _— -
Which is the same as:
dg dg dn
= =7 L = 2
e (20, y0) + ay(ﬂﬁo,yo) dx(l“o) (2)
As g—Z(xo,yo) # 0 by assumption, set:
%(l’myo)
A= go—— (3)
Fy(m07 ZUO)
From equations (1), (2) and (3) we have:
0 0 d
dfi(ﬂcmyo) = —afg(xoayo) : 72(960)
0 d
= —A£($0>yo) : ﬁ(fﬂo)
dg
= )\7
d (z0,%0)
Finally we have:
0 0
Vf(zo,y0) = <di($07yo)a5§($o,y0))

0 0
= (z\di(xo,yo),/\(f)g(afo’yoo
AVyg(zo,yo)

Therefore we have V(f — Ag)(zo,y0) = 0 and hence f — Ag has a critical point at (zo, yo). O
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Remark 5.2. The three important equations you will need, to find an extremum (zo,yo) of f on
X ={(2,y) : g(z,y) = 0} are:

W(%’yo) =0
W(fﬂmyo) =0
g(wo,90) = 0

The above theorem can we extended to functions f, g of several variables.

Theorem 5.3. Suppose f,g € C' are functions of n variables z1,...,, and g is regular (i.e. Vg # 0).
Using the notation x = (1,...,%,). If Xo is an extremum of f on X = {x € R™ : g(x) = 0} then there
exists A € R such that f — Ag has an unconstrained critical point at xgq.

Theorem 5.4. Suppose y( ) € C?, f,g € C? are functions of z,y,y’. If y(x) extremises I(y) =
f‘m f(z,y,y")dz while J(y f f(z,y,y)dx = jo where jo € R, then there exists A € R such that y(z)
is a critical point of I — )\J Or in other words f — Ag satisfies its Euler-Lagrange equation.

Proof. Suppose y is an extremum of I on the set of functions J(y) = jo. Let u,v € C? be functions of =
such that u(zq) = u(zs) = v(x1) = v(zz) = 0 and define:

Fuo(hk) = I(y+ hu+kv)

Gu,v(hv k) = J(y + hu + ]ﬂ)) - jO
As y is an extremum of I on the set of functions J(y) = jo, (0,0) is an extremum of F,, ,, on the set of h, k

where Gy, (h, k) = 0. Then there exists A, ,, such that F, , — AG,, ., has a critical point at (h, k) = (0,0).
Therefore we get the following equations:

0

7(Fu,v - )\u,vGu,v)(hy k) = 0
oh (h,k)=(0,0)
0
7(Fu,v - Au,vGu,v)(h7 k) = O
ok (h,k)=(0,0)
This means we get the following equations:
d
— (I(y + hu) — Ao J (y + hu)) =0
dh h=0
d
7(I(y+k’0)_)‘u,vt](y+kv)) =0
dk k=0
Therefore y satisfies the following equations:
i 6(f B )‘u vg) d a(f B Au vg)
s —_— e = 4
/m1 u( By o oy dx 0 (4)
" of — )‘u,vg) d (O(f - Au,tzg) _
/1:1 v ( By . oy dr = 0 (5)

From equation (4) we get:

/mu or _d (91 dr =\ mu 99 4 (99 dz
. Oy dx \ Oy M Oy dx \ Oy

(i ()

0
)\uo'u—
' T2 99 _ d (94
le ’LL()( y dx <3y’)> dx
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As the right hand side of equation (6) is independent of v, we can write A, ., = A. Then for all v € C?
such that v(z1) = v(z2) = 0 we have:

v2 o(f — A d (O(f—A
/ U((f g)_((f /m))dm
- y dx oy
Then by the Fundamental Theorem of Calculus of Variations we get f — Ag satisfies its Euler-Lagrange
equation and hence y is a critical point of I — AJ. O
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